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Abstract

Model update is the logical extension of model checking, allowing automated

modification to models found not to satisfy a given property in the checking process

[10, 103]. In local model update, counterexamples are derived from model checking

sessions where some ACTL formula has been found unsatisfied. By updating the

localised models to satisfy the underlying property, we may derive modifications

to the original global model. Constraints also play an essential role in describing

allowable system behaviour. Variable and action constraints can be defined which

describe allowable updates on a counterexample in the update process, extending

developer control over what is a valid update on the original system.

In previous attempts, methods of update required the processing of the entire

model. With larger scale industrial models, this was not feasible due to the inherent

complexity. Further, constraints placed on the model in question were not addressed,

and as such critical functionality could be circumvented (e.g. breaking a resource

deadlock using some method should not cause some critical functionality of the

module to cease functioning). In this dissertation, the foundations of ACTL tree-like

local model update are thoroughly studied. We define necessary elements of ACTL

local model update, describing ordering metrics for determining which updates are

simpler with respect to weak bisimulation ordering. Further to this, we look at the

link between local model update and belief revision, semantic characterisations for

typical updates, analyse the complexity for general cases of update and present the

theory underlying constraint automata.

We present algorithms in the form of pseudocode describing earlier formalisa-

tions, characterising update cases based on ACTL temporal operators. With this, a

stand alone prototype for automatic generation of candidate fixes based on ACTL

specifications is developed. NuSMV is used to derive counterexamples which can be

parsed and analysed for generating candidate fixes. To test the effectiveness of the

prototype, we present three case studies including a case study containing constraint

automata compliance in the SPIN language.
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Chapter 1

Introduction

1.1 Introduction and Motivation

As most of us experience, computing has applications to almost every element of

life in the modern world. We rely on many of these applications to deliver a high

standard of quality, and in the case of critical systems where human life may be

involved, be fault free. Saying this, we find ourselves in a position with the hardware

and software systems that support computing, where complexity is the status-quo

instead of the exception [3]. It is very easy for human error to occur in the design

process and errors can be very difficult to detect in the design. Developers require

advanced means of computer aided modification to guarantee accuracy and design

soundness when designing systems of industrial scope.

Many approaches to computer aided modification and diagnosis exist and have

been researched extensively over the last thirty years. Some such techniques are the-

orem proving, model checking, model based diagnosis, automated repair and model

update. Of these, arguably the most promising approach has been model checking

with its automatic approach to model verification. Although finite state verifica-

tion techniques like model checking are not as general as theorem proving based

verification approaches in terms of kinds of properties that can be proved, model

checking is guaranteed to terminate and requires less mathematical sophistication

[43]. In model checking, the specification properties a system is required to meet

are expressed as formulae in some branching or linear temporal logic. With these

temporal logic specifications, a model checker can report errors and provide useful

clues as to where faults occur. These are usually in the form of counterexamples,

linear paths leading to a violation of the formulae in the model.
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Unfortunately, it has been long established in its respective field, that model

checking is solely for verification purposes and does not recommend or apply any

possible modifications to the system. To this point, there exist approaches posed

ten years ago which provide possible modifications satisfying user defined behaviour,

though do not do so based on temporal reasoning or have any generalised framework.

Recently in 2008, Zhang and Ding proposed a generalised framework for modification

of Kripke Structures over CTL specifications which recommends possible candidate

updates for finite state transition systems [101]. Although the approach proposed

by Zhang provided updates for finite models, inherent complexity and the model

explosion problem made it infeasible to scale for industrial applications.

The method we implement utilises counterexamples based on the knowledge

that they represent a minimal intelligible subset of the model leading to property

violation, thus giving a reduced model space for update at the cost of generating

tree-like counterexamples and restriction to universal quantifiers in CTL (ACTL)

to express model specifications. Local model update effectively localises repair to

sections of the model where the violation occurs. To demonstrate the problem posed

by complex specifications and the utility provided by this approach, we consider an

example of localised system update on a classic example in model checking, known

as the microwave oven model.

1.1.1 The Microwave Oven Model

A good preliminary example demonstrating ACTL local model update is the mi-

crowave oven case study, which was originally devised in [24]. This example illus-

trates how counterexamples can be used to isolate fault regions in a hardware model

and repaired to reintegrate a fix into the original model. Consider the scenario where

we wish to verify the relative safety of a simple piece of consumer electronics. To do

this, we would devise a finite state transition model representing all the states the

device can be in and what operations executed cause the system to change state.

Here, we have a model which represents the operation of an abstract microwave,

with operations that allow starting, opening the microwave, heating food and reg-

istering an error state. The relationship between the combinations of states is

represented in Figure 1.1.
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Figure 1.1: Transition graph of a microwave oven.

Here, there are provisions made for the door to open and close; attempting to

start the system with the door open will cause an error state to occur, but can be

reset once the door is closed. The natural usage of the microwave is emulated by

closing the door, starting the microwave, heating food, stopping the system, turning

off heat and optionally opening the door. This results in the creation of seven

reachable states, S = {s1, s2, s3, s4, s5, s6, s7}.

The condition we want to guarantee for this model is that from every state

of the system, if the microwave is started it implies that in all possible futures

heat will be applied. We can represent this specification in ACTL as AG(start →

AF(heat)). To find out if the system satisfies this condition, we need to locate

an example of where the system is in the start state, but heat is not applied at

some given future point. In ACTL the witness to this counterexample will satisfy

the complementary formula EG(start∧ EF¬heat). Applying model checking, we

find linear counterexamples to the initially described property, the infinite path π

witnessed by [s1, s2, s5, s3, s1, . . .]. We see this fault is caused by starting the

microwave while the door is open, causing an error and never allowing heat to

become true.
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In earlier approaches to model update proposed by Ding in [42], the algorithm

required consideration to every state in the model, states were checked for their

ability to determine if any state in the model satisfied the converse of the property

to locate the error source. From here, different primitive updates could be applied

in combination to solve the issue. Possible updates include removing the relation

between s1 and s2, removing the states s2 and s5 and replacing s2 or s5 such that

they do not violate the property. This gives a total of five possible minimal updates,

two of which could be considered dangerous from the perspective of the developer,

modifying s2 or s5 to satisfy the proposition heat.

We can see that this technique is not complete. As counterexamples are local

regions representing the subset of states of the model which do not satisfy the prop-

erty, we can use these counterexamples as a means of error localisation. Further to

this, a means of formally describing domain based information pertinent to update

is required. From this, we apply updates to the counterexample we generated in

model checking and can define a variable constraint automata dictating that if heat

becomes true when the error label is true, we define this as an unacceptable state

for the system to be in. This would then put the automata into a violation trap

state.

Considering the counterexample, we can see there exist four states to apply the

update. Using the property, we are guided by the semantics of AG to check the four

states for states where start is true and there is no future state where heat becomes

true. This is true for s2 and s5. Applying minimal change for counterexamples we

see the possible changes involve removing the relation between s1 and s2, removing

s2 and s5 and replacing s5 with such the new state satisfies heat. The last update

is removed from the update space as it causes the designed automata to transition

to a trap state. From this simple example we can see that local model update with

constraints allows a much more intuitive and efficient means of deriving an update

to the model such that it satisfies the property and adheres to necessary developer

constraints.
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1.1.2 Motivation

With model checking theory being a matured field of research, a foundation exists in

the form of highly optimised model checking tools which generate linear counterex-

amples. These can be used to guide repair, as initially discussed in [10]. There is

currently no existing universal model update tools for guiding and localising repair

through counterexamples. Further to this, there are limitations on directing the

model update system in [101] towards permissible updates which adhere to action

and variable related constraints inherent in the system, but not explicitly protected

in update. Devising constraint automata which dictate what are acceptable states

and actions within the model can simplify the update selection process and allow

more context appropriate updates to be generated.

Based on the research performed, we integrate model checking and counterexam-

ple generation methods with model update techniques in an attempt to close the gap

between functional generalities and computational effectiveness. The technique uses

specifications expressed in universal computational tree logic on counterexamples

generated in model checking sessions to localise update. Further to this, we extend

local model update with constraint automata to allow better control over types of

updates which are allowable and to improve efficiency. The major contributions

presented in this thesis are discussed in the following section.

There is an enormous wealth of research into system verification and automated

repair; in this thesis we make the case for an extension on model update techniques

that is more accurate and efficient than those previously posed. We will review

the past literature present for model checking theory and its applications, with a

focus on the NuSMV verification environment, analyse previous attempts in system

debugging and repair, and discuss recent developments with model update. To begin

with, we give a history of model checking and give insight into the technique.
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1.2 Background

1.2.1 Model Checking

Model checking is an automatic technology which addresses the following problem:

given an abstracted finite model M of some system, test automatically whether this

model satisfies a given specification φ [24]. Model checking was originally devised

independently by J. Quielle and J.Sifakis in [82], E. Clarke, and E. A. Emerson in

[21, 25, 45]1. A full history of the thirty years of model checking and the surrounding

topics can be found in [3, 24, 66].

This technique is useful for both hardware and software systems to determine if a

finite representation of the system holds the required properties. These may include

properties which detect liveness between processes sharing some resource, or absence

of deadlock between interacting processes in some model. With this in mind, model

checking is designed for finite state systems, often containing concurrent behaviour

and most usually are reactive systems. Verification is performed in an automatic

fashion, such that a binary response as to the satisfaction of the model is returned.

In the underlying theory of model checking, we express the problem as the given

model M , at a specific state s (often the initial state) needs to satisfy the formula

φ in some temporal logic. This is written formally as (M, s) |= φ.

A fundamental issue for model checking is devising a natural abstraction of the

system S from the hardware or software in question, such that it represents a finite

model which can be checked for correctness by some property. Similarly, expressing

the system property required in the model by the developer in temporal logic in

such a way that will find a system flaw (if present) is another major issue for the

process. Also, devising algorithms and data structures which allow for the handling

of large scale search spaces is another consideration which determines efficiency in

model checking.

1A cited algorithm for model checking for the propositional branching time logic CTL
was presented at the 1983 POPL conference [26].
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It should also be noted, in general cases hardware systems are finite, but software

systems are often infinite systems. Abstraction techniques use inductive methods

to prove a specification over an infinite domain in some finite number of steps with

theorem proving, which may work for structural components but fail at a system

level.

Figure 1.2: Previous model checking methodology.

The traditional method of model checking is displayed in Figure 1.2 and Fig-

ure 1.3. Here, some system design is translated through an abstraction mapping to

a finite state Kripke structure and a corresponding temporal property is devised to

determine if the model holds the property.

Figure 1.3: Process for counterexample derivation.

These are passed as arguments to the model checking tool which exhaustively

searches the state space to find some instance of property violation. With this, any

instance of design flaws discovered can be noted for redesign to improve or taylor the

previous design to some specific use. Traditionally, model checking is a post design
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method of catching system flaws before a commercially used system is implemented.

In ACTL design flaws come in the form of counterexamples, linear paths leading to

the specific violation.

The finite state property of models should be emphasised as a necessary require-

ment for the model checking process. Model checking exhaustively searches the state

space via case analysis and based on the property returns any present design bugs.

The finite model property for system models also guarantees termination of the

model checker based on the models finite size. These finite models can be visualised

as transition graphs, where edges are transitions between states and vertices are the

state sets of labels describing the finite models current position.

Model checking generates a binary outcome from the checking session, returning

true if the model satisfies the property and false otherwise. It is possible, based

on the property verified, to return additional information on the checking session.

If the property is translatable to an ECTL property and is satisfied in the model,

a witness trace can be returned, explaining how the model satisfies the property.

If the property can be expressed in ACTL and the property is unsatisfied in the

model, a counterexample can be extracted explaining the violation in the model.

This thesis focuses on the latter, using counterexamples as a means to localise the

region of modification.

Model checking has a history of application to hardware and software systems

represented as finite transition systems. In [104], Zhao et al. applied the technique to

the Sliding Window Protocol, used in TCP/IP, and tested protocol properties such

as data integrity, liveness and information consistency. Included in the modelling is

intruder modules to illustrate the link between illegal data modification and violation

of protocol properties such as data integrity2. A more exhaustive study of the rich

history of model checking and related technologies can be found at [25, 46, 66] and

throughout this thesis many applications of model checking for system verification

will be presented.

2Fokkink et al. in [48] also verified the sliding window protocol independently using the
µCRL process algebra toolkit.
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ACTL and Specification Logics

For the purpose of this thesis, we use ACTL to specify system properties. ACTL

is a branching time logic which employs a tree-structure as a means of modelling

time. With this representation of time, we can unroll states in a finite state transi-

tion system to represent it as an infinite parse tree. This allows future paths that

bifurcate and, when executed, a set of paths realised.

Semantics for ACTL are determined in relation to Kripke Structures. Syntax of

ACTL can be defined inductively using Backus Naur Form:

φ ::= ⊤ |⊥| p | ¬p | (φ ∧ ψ) | (φ ∨ ψ) | (p→ ψ) | AX(φ) | AG(φ) | AF(φ) | A[φUψ]

In ACTL, the universal path quantifier allows for determining satisfaction of all

paths from a state by some temporal query, ACTL has no notion of single path

quantification.

Other temporal logics which are applicable in model checking are CTL, which

contains existential quantifiers over paths and LTL, where semantics are defined over

individual computational paths and have no notion of branching path quantification.

Extending CTL is CTL*, which applies nested modalities and boolean connectives

prior to applying any path quantification.

1.2.2 The State Explosion Problem

A well known issue in model checking is the state explosion problem. The large state

count of system models can be accounted for in many ways, but in general is put

down to the inherent detail required to fully represent the subtleties of the design

of a system. Concurrency is one of the prime causal agents of system complexity;

explicit state system verification requires that each individual components state

count be combined against each state of the other running components to get an

accurate portrayal of the possible states the system as a whole can represent. As can

be seen in industrial cases of system verification, it is often the case that countably

large numbers of components exist. This combination of components state space

causes state count explosion, making runtime of verification algorithms in worse

case scenarios intractable without optimisation.
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Many methods have been proposed for alleviating the problem of state explo-

sion. Popular methods include selecting subsets of ways of interleaving executed

transitions such that they only represent possible interleavings of modules in the

system, usually by means of system constraints [3, 24]. The use of binary decision

diagrams (BDDs) was pioneered by McMillan in [76]. Another favourable approach

to handling the state explosion problem is bounded model checking. Clarke et al.

provides a sound analysis of the bounded model checking approach in [22].

Other successful approaches to state explosion handling includes SAT-based op-

timisation in symbolic model checking. Here, model checking can be done in an

unbounded fashion as a method of alleviating issues of memory overflow found in

BDD approaches to model representation. Conjunctive normal form is employed

as a means of representing states and relations in a model checking session and

SAT methods can be used to perform checking functionality. An approach to this

was outlined by Kang and Park in [69]. In this article, Kang and Park show the

boolean satisfiability approach verified more system circuits than previously posed

BDD-based symbolic model checking approaches such as the one devised by McMil-

lan. Another approach to handling system complexity was posed by Demri et al.

in [36] called parameterized complexity handling, where synchronised components

are taken as parameter for non-flat systems. In the following section, we will review

the major approaches to ameliorating the issues of state explosion: Binary Decision

Diagrams and Abstraction.

Binary Decision Diagrams

One method to alleviate the state explosion problem was the introduction of sym-

bolic model checking, where binary decision diagrams were enlisted as a method of

representation of models as formulas in the modal µ-calculus. The first conception

of this was proposed in [12] by J. R. Burch et al. In this approach, the µ-calculus

is used as a specification language, such that the relations and formulas of system

models can be represented symbolically. This representation exploits regularities in

system design, often based around concurrent behaviour.

In model checking, binary decision diagrams (BDDs) represent boolean func-
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tions. These boolean functions can be used to represent states and transition re-

lations in model checking, such that the model representation incorporates sets of

states over individual states. This allows a symbolic model checking implementation.

BDDs can be represented visually using the construct of binary decision trees. Non-

terminal nodes are represented by variables labelled a0, a1, a2 and terminal nodes

are labelled a binary evaluation 0 or 1. With this, each binary decision tree rep-

resents a unique boolean function. However, binary decision diagrams are largely

inefficient representations and contain many redundancies which can be removed.

Variables can be given an ordering, such that each BDD is unique and equivalent

boolean functions map to a unique BDD. This type of BDD is called an ordered

binary decision diagram, or an OBDD. The first implementation of OBDDs was in

Ken McMillan’s thesis for SMV, where OBDDs are used as a structural method

of alleviating the state explosion problem and reduce running time [76]. OBDDs

can be generated through the removal of duplicate terminals, non-terminals and by

merging nodes and performing redundancy tests [66]. Using this method, it can

be determined if two BDDs are equivalent post optimisation. Given two reduced

OBDDs with a compatible variable ordering B1 and B2, these OBDDs will have an

identical structure if they represent the same boolean function.

Abstraction

In model checking, abstraction is the process of deriving a simplified relational model

from a more complex system model. Abstraction allows us to remove details of the

model which are irrelevant to the property, with the goal of simplifying the model

and thus reducing the search space in the verification process [66]. Abstraction was

introduced as a means of reducing model complexity as a complement to OBDDs

scalability with complex applications [17]. An example of an abstraction is the

temporal logic property used in checking against the original system model; model

checking is the process of mapping the temporal property against the system model

and looking for cases where the abstraction does not map to the model.

Manual abstraction is a common task undertaken by system developers, and is

an important process in designing a finite model from the original hardware or soft-

ware system. Many automatic methods of abstraction have been designed over the
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years, but many do not have any formal justification3. Another important process

related to abstraction used in verification and automated repair is refinement, the

process of using the higher level specification to generate a more complex lower level

implementation which still satisfies the original specification, but also includes more

detail or required specification. In this sense, the refinement process creates a more

realistic model of what it is representing and is considered more concrete.

A central text for abstraction in model checking is Model checking and Ab-

straction by Clarke et al. in [26]. This paper set forth an early implementation of

abstraction in model checking, which approximates canonical abstractions such that

they can be symbolically executed. The system devised used properties expressed in

the CTL* branching time logic and showed the effectiveness of the approach by ver-

ifying a pipelined ALU circuit containing 101300 states. Following this, an approach

to abstraction refinement was posed in [23, 28] by Clarke et al. which generates

iterative abstract models to the goal of verifying an abstract model of the concrete

system. This proposed system generates an initial abstraction by analysing control

flow of the original model. From here, abstract models are verified for property

satisfaction. Abstract models may admit spurious counterexamples which can give

useful information as to the correctness of the abstraction. Based on this, the model

can be refined and the process iterated to verify the correctness of the concrete

model. This approach is demonstrated with the created tool aSMV, an extension

on NuSMV, on a Fujitsu IP core design with 10, 000 lines of SMV code.

Another early approach by Wing and Vaziri in [98] highlights an early attempt at

abstraction of complex systems to exploit the nature of the system and the property

to be verified. Wing and Vaziri made it known that there is no formal justification

behind the abstraction function and it is the role of the developer to determine these

functions manually. In this paper, they demonstrate application of abstractions

applied to models by verifying abstractions of three cache coherence protocols, the

Andrew File Systems AFS0, AFS1, and AFS24.

In [47], Felfernig et al. gave a scheme for using hierarchical abstractions to alle-

viate complexity in configurator knowledge bases in model based diagnosis. These

3Examples of this can be found in [23, 98].
4AFS0 and AFS1 protocols are also used in case studies for model update analysis by

Zhang and Ding in [101].
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configurator knowledge bases were used in product configuration applications where

new component types or regulations need to be adhered to and products can be re-

configured. In the paper, algorithms are given for the hierarchical abstraction meth-

ods, to the point of developing an industrial constraint based configurator library.

In [74], Lawesson et al. introduced a fault isolation system from model checking on

concurrent systems. This application used automatic abstraction methods based on

observational equivalence to handle state explosion and static analysis, to the point

of creating a total function from message logs to show where faults are located. This

allowed the author to reduce the fault isolation to a table lookup, such that tables

could be used to find non-diagnosable system failures and redundant error messages.

Another approach was put forward by Boyer and Sighireanu in [9]. Abstraction

methods were utilised to simplify sources of complexity in the Pragmatic General

Multicast Protocol for the verification of reliability specifications. From these ab-

stractions, a formal model was generated and constraints to apply to parameters

were obtained. A method for archiving successful abstraction functions generated

in XML for PROMELA programs was put forward in [35]. XML was used as a

translation language between the PROMELA programs and the higher level ab-

stractions generated. This had the benefit of allowing many highly optimised XML

tools to be used for generating abstractions. This paper also introduces the use of

the implemented tool αSPIN for this reason. In [17], Chauhan et al. put forward

two methods of model abstraction analysis using SAT checking. Firstly, a method

where variables irrelevant to the checked property were made invisible and set as in-

put variables is proposed. Further to this, image computation is used as a means of

pre-quantification of variables, to allow BDD model checking to be performed on the

system. NuSMV was used to check for counterexamples. If counterexamples were

found, they were simulated in the concrete system with a SAT checker to determine

if they were spurious.

Building abstractions manually and automatically for model checking purposes is

a large field of research with entire dissertations dedicated to it. For a deeper analysis

into the concepts of abstraction refinement, the reader is directed to Abstraction

Refinement for Large Scale Model Checking by Wang et al. [96].
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1.2.3 Tools and Implementations

Model checking has been fruitful in more than the theoretical arena, as over the

years many model checking tools have been created and have found use in industrial

applications ranging from distributed cache coherence protocols, to verifying robotics

controllers. In this thesis, we focus on the NuSMV verification suite [15, 19]. NuSMV

was developed by E. Clarke, A. Cimatti, F. Guinchiglia and M. Roveri between Italy

and Carnegie Mellon University in the United States [20].

The SMV model checker was developed by Ken McMillan in 1992 [76]. SMV

was based on binary decision diagrams as a means of optimisation of the checking

process and is an early example of branching time logic being used as a means of

model checking specification. The Cadence SMV model checker is another offshoot

of the SMV technology, developed by Ken McMillan with Cadence Berkley Labs.

Cadence SMV was developed with compositional systems in mind, such that infinite

systems can be represented using a compositional model, and subsequently verified.

Other than the SMV branch of model checkers, which initially focused on BDD

based model checking with branching time specifications, there also existed model

checkers which were developed to handle different types of specifications and model

types. The model checker SPIN was developed primarily through G. J. Holzmann at

Bell Labs and was created for simulation and verification of distributed algorithms

[46, 62, 63]. SPIN uses the Promela language to specify system behaviour in LTL in

a programmatic manner similar to C. Related to SPIN is Microsoft’s SLAM toolkit

[5, 64], which allows verification of safety properties for system software written in C

without user abstractions or specifications. SLAM provides the tools for abstraction

of C programs, model checking over boolean programs and the ability to discover

further predicates for boolean program refinement.

Some other model checking technologies which have found use in the academic

field include the UPPAAL checker for verifying dynamic properties in real time

systems [73], Mur-φ [38], generated by Dill et al. at Stanford University for industrial

hardware verification, Hytech [61] for linear hybrid automata5, Kronos [31] for real-

5Developed by Cornell University in 1996 [1].
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time systems by VERIMAG, and DESIGN/CPN for Coloured Petri Nets [67] by

the Meta Software Corp. Further to these, some model checking technologies which

deserve further review include MCK, FDR, COSPAN, Concurrency Workbench,

Mex, and EXP. While this is not a comprehensive list, as the number of academic

model checkers increases yearly based on new technologies and approaches, this

covers many of the well known tools.

In [43], Dwyer et al. proposed a verification system for concurrent Ada pro-

grams called FLAVERS (FLow Analysis for VERification of Systems). Ada tasks

are analysed for verification based on operator defined behavioural properties over

event driven models. In this framework, FLAVERS generates abstractions of the

system as a whole, known as Trace-Flow Graphs (TFGs) and individual tasks called

Control-Flow Graphs (CFGs), which are generated and refined. Combining with the

TFGs, these together are model checked. This system also allows the use of user

defined constraints.

In the following section, we will give focus to the model checking tool SMV,

which is used in generating the implementation to the theoretical system posed in

this thesis.

NuSMV - The Symbolic Model Verifier

NuSMV is a model checker, considered one of the benchmarks for verification of

finite system models [20, 24]. NuSMV was developed by E. Clarke, A. Cimatti,

F. Guinchiglia and M. Roveri between Italy and Carnegie Mellon University in the

United States. NuSMV is an extension on SMV which allows added functionality,

using SAT and BDD based methods of symbolic model checking (NuSMV 2).

NuSMV extends the functionality of SMV in that it allows the definition of

process modules, LTL specifications and other functionality not previously offered.

NuSMV processes the represented model and returns true if the model satisfies the

specifications and, if false, returns an error trace explaining where the violation oc-

curs. NuSMV also allows for the representation of LTL, various forms of constraints

and the definition of processes by the developer.

SMV is also the name of the language used for representation of the system
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models checked by the implemented system. SMV is used as the input language for

the implementations SMV, NuSMV and Cadence SMV and allows a modular and

expressive representation.

An SMV program description consists of one or more modules which accept

arguments and declare variables local to the specific module. Each module in an

SMV program description requires a label be assigned to it. Of the modules present,

there must be a module labelled main where the program executes from. In each

SMV module a VAR declaration section demarcates where variables used in the

module are assigned types. ASSIGN declarations mark where the transition relation

for the underlying model is defined, by initially assigning values to variables using

the init() call (e.g. a boolean variable var can be initialised as init(var) := 0 ).

After this, a next() call assigns a new value to each variable at each transitional

iteration, i.e. it dictates the transitions that can occur in the underlying finite model

and the type of values that can be assigned to a given variable in the models states.

Conditional case statements can be applied to next calls, such that present system

conditions can be referenced to direct transition relations and model the desired

behaviour. Specifications declared in SMV are prefixed with the tag SPEC and

follow the syntax of CTL specifications (NuSMV also allows LTL specifications and

simple constraints such as fairness). To demonstrate NuSMV syntax, we present an

example of an asynchronous three bit counter with a specification of desired model

behaviour6 in Figure 1.4.

We define an inverter module that takes as argument a single binary input and

assigns its output value to the negation of the input. In the main module, three

inverter objects are defined and are chained, such that the output of one is passed

to the input of another in a circular fashion. To complete the circular chain, the

final output of gate3 is passed to gate1.

The property we want the represented system to hold is that at all states on

all computational paths, all future paths should lead to both possible values for

gate1.output, i.e. gate1 should oscillate indefinitely and, by implication, so should

gate2 and gate3.

6This example can be accessed at the NuSMV examples collection at
http://nusmv.fbk.eu/examples/examples.html, the reader is referred to [15] for further
NuSMV usage information.
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01 : MODULE inverter(input)
02 : VAR

03 : output : boolean;

04 : ASSIGN

05 : init(output) := 0;
06 : next(output) := !input;

07 : MODULE main
08 : VAR

09 : gate1 : process inverter(gate3.output);
10 : gate2 : process inverter(gate1.output);
11 : gate3 : process inverter(gate2.output);

12 : SPEC

13 : (AG(AF (gate1.output))) & (AG(AF (¬gate1.output)))
14 : /*A declared specification phi*/

15 : FAIRNESS running

Figure 1.4: An asynchronous three bit counter in the extended SMV specifi-
cation language.

1.2.4 Counterexamples

Highly regarded as a tool for error diagnosis, counterexamples are a useful product of

model checking sessions, primarily in a design context where engineers and designers

require an example of where a system fails by some given property. The ability to

exhibit cases where a model explicitly fails some specification can save a great deal

of time in the design cycle, over just being notified that the model fails by some

desired property. Counterexamples are an effective feature to convince an engineer

of the value of formal verification for the localisation and correction of system bugs

in some design.

In [28], Clarke and Veith provided a survey of the contributions to the study

of counterexamples. The article contained an analysis of the generation of coun-

terexamples, the state explosion problem, the application of counterexamples to

abstraction refinement and the need for abstracting out irrelevant variables in coun-

terexamples to facilitate better understanding of where the violation occurs.
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If some model checker finds an ACTL formula φ does not hold for some s ∈ S, a

counterexample C can be found which explains the violation. A property φ claimed

to hold for each element s in a model M can be disproved by displaying an instance

of s ∈ S such that φ does not hold true for S, and s is reachable from the initial

state.

Counterexamples can be said to have the property of explaining the violation

of φ in a rigorous manner in the model M , using C. Clarke et al. gave a set of

expectations of a found counterexample in [27]. Counterexamples:

1. are a subset of the states of some model;

2. violate a property. C violates φ, C 6|= φ;

3. explains the violation of φ in M with C;

4. counterexample C is viable.

Another important note is that with counterexamples, it is equivalent to say

C |= ¬φ, in this way the counterexample can be seen to witness ¬φ. Saying this,

existential properties cannot be disproved by counterexamples, although they can

be proved in the case they hold true by generating witnesses [27]. Negating some

ACTL formula φ yields its ECTL equivalent ¬φ.

Figure 1.5: A linear counterexample of AF¬x [27].
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Example 1.1. The ACTL specification AF¬x denotes “On all paths, x is not true

at some point in the future”. If the specification AF¬x is violated then there is some

infinite path in M where x always holds. This is referred to as a counterexample

of AF¬x. Figure 1.5 illustrates a case where some Kripke structure M violates

the property AF¬x. Counterexample C describes the infinite path witnessing the

specifications existential converse EGx; the violation on C is an explanation of the

violation on M .

1.2.5 Model Update

An extension of model checking functionality, the problem of model update poses a

simple question: given a Kripke structure of some abstracted system and a temporal

property formula found unsatisfied, what is the smallest set of atomic modifications

that can be performed on the Kripke structure such that it will satisfy the given

temporal property. This approach has its roots in the combination of knowledge

update and program debugging and repair7. In [6], Baral and Zhang discussed

knowledge update and minimal change in knowledge domains between worlds. This

work is based on the modal logic S5 and was the first integration between model

checking and knowledge update, leading to the creation of model update.

In [42, 101], a generalized framework for model update was proposed. Here, some

Kripke structure M not satisfying an arbitrary property φ (M 6|= φ), and expressed

in Computational Tree Logic (CTL) could be modified based on a set of steps of

primitive updates operations. This was coupled with minimal change principles,

such that the modifications lead to the creation of the model M ′, satisfying the

original property (M ′ |= φ) on the condition that there is no other set of atomic

modifications on a model M ′′, such that |M ′′| ≤ |M ′|. We could then utilise M ′ as

a candidate solution to repair the original program. In this system, five primitive

update operations were allowed, including removing or adding an isolated state,

removing or adding a transition relation or changing the labeling function on a set

state. With these and the minimal change criteria, the framework was set for a

model update system.

7See [6, 56, 87, 99].
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While this is a legitimate method for modification of simple models, difficulties

arise when presented with models of larger scale industrial complexity. Model update

utilises the entire Kripke structure and the space of possible models which both

satisfy the required property and is considered equally minimal explodes for models

of any significant size; this is known as the model explosion problem [39]. Another

known issue is that when given two Kripke structures, determining if one is an

admissible model update of the other is co-NP-complete, even for simple properties

[101]. To compound this, there are no criteria that dictates which primitive updates

are more preferable between modifications, whether adding a state or removing a

transition to enact satisfaction.

Zhang and Ding extended the update methodology to better handle the model

explosion problem in [39, 101]. Here, a new update principle called minimal change

with maximal reachable states was used to optimize the search for candidate updates,

such that the pool of committed models were reduced to a subset of fewer strongly

committed models. With this framework, a focus was placed on updates which

maintain prior reachability between states, initially founded to highlight updates

which changes the behaviour of the system in a minimal way without effecting state

reachability.

Figure 1.6: Previous model update methodology.

Another parallel approach to model update is model revision. As model update

is a technique for maintaining consistency of dynamic systems by desired properties,

model revision applies to a static context. In [58], Guerra et al. devised an approach

towards model revision based on AGM belief revision postulates, defining a revision

operator and characterisations drawn from revision theory.
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Implementations

Zhang and Ding’s approach utilized SMV and taylored state reachabilty algorithms

to effect update, details of algorithms used in model update are analysed in [40]. The

approach was implemented in the C language and used explicit state Kripke struc-

tures encoded in C, OBDD’s were not considered as a means of optimisation, based

on the constraints of research time. A case study demonstrating the application of

this approach can be found in [41] and details giving semantics and implementation

of the model update system can be found in [42].

In [34], Menezes et al. developed an alternative method to Zhang and Ding

based on the methods produced in [80], extending model update to modification

on partial models represented by labelled transition systems. The proposed system

used α-CTL for specifying properties corresponding to actions in a labelled transition

system. The system used modified primitive update operations, such that addition

and removal of transitions induced by actions would occur on given partial models.

Further to this, the minimal change criteria were altered to take into account the

action based primitive updates, only taking into account states and transitions and

no altered label functions. Characterisations for the action based update procedure

were also provided.

Another alternative implementation of the model update framework was posed

by Cacovean and Stoica in [14]. This implementation used the ANTLR toolkit, a

framework for developing concurrent and real time systems for the representation of

the update architecture. The model update framework was represented as an alge-

braic compiler which returned candidate modified models from system specifications,

given as argument. In their paper, the technique was demonstrated by updating a

finite model representation of the elevator controller system used in many model

checking case studies8.

8Preliminary work by Cacovean et al. on developing an implemented universal model
update compiler can be found at [13].
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1.3 Related Work

Counterexamples

In [11], Buccafurri et al. analysed the complexities of linear counterexamples de-

rived from ACTL model checking sessions. The research found there is no simple

characterisations of ACTL formulas that generate linear counterexamples. Further,

Buccafurri determined the maximal set LIN of ACTL formula templates, whose

instances are generated by substituting atoms with arbitrary pure state formulas,

guarantees linear counterexamples. Algorithms were proposed for Kripke structures

witnessing the failure over a single path, which could be computed in polynomial

time. In [4], Ball et al. comments on the research developments in counterexample

generation and put forth a method for generating multiple simple counterexamples

exhibiting independent causes. The approach was undertaken for C programs in the

SLAM environment. The technique involved finding transitions in the error trace

that did not appear in a correct trace. Meolic et al. proposed a method for guaran-

teeing linear witnesses and counterexamples for the action based temporal branching

logic in [77]. The approach introduced witness and counterexample automata, to

the point of recognition of linear counterexamples.

In [44], Clarke et al. analysed how counterexamples and witnesses were generated

for CTL and CTL* properties. The author worked in the framework of symbolic

model checking for OBDDs using SMV as the verification tool. In [85], Shen et

al. devised a method for counterexample minimization for ACTL property loop-like

and path-like counterexamples. System proposed used a notion of guided cubes over

states, represented as BDD’s to remove irrelevant variables from the counterexample

description. Experiments were run in the NuSMV environment to demonstrate the

efficacy of the approach.

In [97], Wang et al. provide an optimisation to existing abstraction refinement

techniques for industrial scope sequential circuits by analysing abstract counterex-

amples. This technique was implemented by breaking down combinatorial logic

cones with boolean network variables and treating these and state variables as
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atoms in abstraction. A refinement algorithm was posed, using concepts of ari-

adne’s bundle techniques and synchronous onion rings. The approach scales, in that

all analysis and computation in the refinement algorithm occurs on the abstract

models. Experimental results are available in the referenced article. Another ap-

proach to abstraction refinement based on counterexamples has been put forth in

[86], by Shoham and Grumberg. In this approach, abstraction refinement occurs

in a game based framework in CTL model checking using derived counterexamples

in a 3-valued semantics. This 3-valued semantics refines abstractions by exploiting

the understanding that verification sessions may return indeterminate results, giv-

ing cause for further abstraction refinement. Shoham and Grumberg put forward

algorithms for the game based framework and give examples of application to show

the efficacy of the technique.

In [52], Fraser and Wotawa analysed the problem of non-determinism in testing.

A problem existed in non-deterministic models, where counterexamples generated

from property violations can be spurious, based on committal to non-deterministic

paths. The approach is based on generated test-case comparison with counterex-

amples of non-deterministic systems. The approach is demonstrated in NuSMV

and an example is presented, demonstrating safety injection systems tested by LTL

specifications.

In [94], Van Den Berg et al. discuss the development of a method of automatic

interpretation for complex linear counterexamples derived from NuSMV sessions.

The authors apply the approach to rail signal control tables and put forth two

approaches: counterexample animation and natural language interpretation. Van

Den Berg et al. also offered a method for counterexample interpretation based on

providing domain specific details on variables, to better facilitate understanding for

the end user. Further research has been done in using counterexamples as a means of

error diagnosis. In the following section on error repair, we will look into the work

done by Groce and Visser in [57] and analyse the effort towards counterexample

information extraction.

As can be seen, much progress has been made over the last twenty years in

counterexample research. Focus mainly centers on making counterexamples more

legible to the developer, using counterexamples as a means of generating better sys-
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tem abstractions, fault localisation, facilitating repair and updating counterexample

generation techniques to make up for flaws or inbuilt assumptions. In this thesis,

we will be using counterexamples as a means of localising faults to facilitate update,

naturally ACTL is the temporal logic used for specification.

System Debugging and Repair

Automatic methods for programming debugging and repair is an area with a long

history of research focus. The aim of automatic diagnosis is to identify the source(s)

of fault and find some set of modifications that remedy the faulty behaviour. Error

diagnosis in digital systems has a rich history reaching back to the 1970’s [29, 33,

79, 83, 92] and over the years many systems have been proposed using different

techniques and implemented in varying languages.

Looking back, early methods of error diagnosis started without any formal de-

scription of diagnosis for system design errors or formalised approaches. Devised

techniques focused mainly on diagnosing hardware faults [91], in general were lim-

ited in expressiveness and temporal properties were not considered as a method of

describing system behaviour. Methods focused on localised regions of the program

code [68, 83] or presented specialised specifications to describe desired behaviour

[32]. Theorem proving was also a popular method of fault detection and localisa-

tion. Error diagnosis occurred primarily on static states.

In [72], Kuehlmann et al. proposed an approach for automatic verification of

transistor level circuits in CMOS design, using an error coverage algorithm for es-

tablishing equivalent boolean structure of circuits. Patterns which correspond to

nets which likely cause errors were propagated from incorrect outputs backward

into the circuit network. This is executed using a combination of BDD-based and

simulation based techniques. This is was an example of a technique which did not

apply model based methods.

One approach to error diagnosis was that of Model-based diagnosis (MBD) [88].

Model based diagnosis was defined as the search for behaviour unintended in the

original program through the use of a model to describe the programs domain. With

that, the model could be processed to determine bugs.
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In most approaches to MBD, the model of the concrete system was expected

to specify the semantics of the program executed in a general manner and provide

observations which lead to expected output values; formal specification was not

required external to the model given. This was appealing as an approach, as it

allowed a description of the software to be automatically generated and used as a

diagnostic tool.

Some leading approaches of model based diagnosis included the design of intelli-

gent debugging systems, which discovered faults inherent in software and hardware

designs. A branch of intelligent debugging was intelligent tutoring [92], where knowl-

edge about particular student assignments and knowledge about common errors were

used to assist students in debugging their code. This was designed to bootstrap the

debugging mentality. Some examples include the PROUST environment for PAS-

CAL and Talus for Lisp.

In PROUST, the intent of the student programmer was analysed by matching

chosen programming elements against a plan library and uses an explicit model

representation for the plan libraries. On the other hand, the tool Talus took a

semantic approach, parsing the student code to a tree structure and matching it

against referenced elements to provide code recognition, based on theorem proving

techniques. Both systems operate on the existence of knowledge banks, representing

deep understanding of the purpose of the given programs and languages in use.

This however was a bottleneck, in that it required explicit external specification,

and generally was only feasible to discover novice programming faults.

An early approach by Console et al. in [30] applied the model-based diagnosis ap-

proach to faults in software. The technique attempted to isolate faulty components

represented in a logic programming environment by adding, removing or replacing

logic clauses to find some configuration which returned correct output based on test

queries and, when executed, can be suggested to the designer. Also presented in

this paper was the notion of leading diagnoses to allow a sense of priority or causes

which were more likely. An early thesis on automated program diagnosis by Shapiro

[84] gave insight into approaches applied in prolog before model based diagnosis was

formalised.
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Early takes on formal model based system repair could be seen in frameworks

such as [89, 90]. The system put forth by Stumptner and Wotawa focused on mod-

els represented in VHDL (Very high speed integrated circuit Hardware Description

Language) for hardware design, similar to that used for concurrent system repre-

sentation. In this framework a program diagnosis approach was taken where a fault

was explained through some finite number of fault models. This system does not

incorporate temporal properties for fault models, limiting its expressive capabilities.

In [91], the VHDLDIAG tool was introduced as a tool for design support through

model based reasoning for localisation of faults in hardware designs in the VHDL

language.

Another similar approach to VHDL program fault localisation in large scale

design was devised by Friedrich et al. in [54]. This approach used the VHDLDIAG

tool and allowed for high levels of abstraction for handling programs of upwards of

10,000 lines of code.

Another solid example of hardware designs being modified was the work by

Chung et al. [18] on VSLI (Very Large Scale Integration) circuits. This approach im-

plemented a gate level design correction system for logic design errors and provided

a tool for logic level correction. The technique applied boolean equation methods

for locating circuit errors. Huang et al. proposed another error diagnosis approach

for sequential circuits in the VLSI design environment [65]. In [78], Nayak and

Walker proposed a simulation based approach for repair on combinational digital

logic circuits. The technique proposed targeting small errors, based on circuit nets

where minor changes are sufficient to effect correction, when new specifications were

added or errors were inadvertently included in the design process. The approach

could handle multiple errors on large circuits, based on simulation and symbolic

algorithms. Another approach to design error diagnosis in combinational circuits

was posed by Ubar in [93], four years later. The detailed approach localised faults

in VLSI sub circuits and did not use a pre-specified error model. This was achieved

through the use of back substitution heuristics to repair the fault on the sub-circuit,

determined through verification techniques. The article put forth a technique for

calculating the method in which the sub-circuit in question should be chosen for

modification. This was explained to increase the efficiency of the process. In the

same year, Veneris et al. published an incremental DEDC (Design Error Diagnosis
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and Correction) approach [95] on combinational circuits in VLSI design. The tech-

nique used a simulation based debugging approach using test vectors to iteratively

identify and correct design functionality, such that it brought the erroneous design

closer to the desired specification.

Over the years, error diagnosis as a field of research has matured and as a

consequence formalisms for determining faults and modifications have been devised.

Model checking has evolved parallel with error diagnosis and many error diagnosis

techniques have borrowed from or included model checking techniques to better

locate and provide understanding of errors.

In 1992, Friedrich et al. [53] put forward a first attempt at formalising the repair

process, extending on model-based diagnosis and concepts of temporal reasoning

to describe inherent system purpose. Definitions are given to describe component

failures in relation to actual, possible and plausible worlds and uses a framework of

observations and actions performed on the system to apply repair of purpose on the

model.

Later in [10], Buccafurri et al. introduced a formal approach integrating AI

techniques with those of model checking to effect system repair. Abductive model

revision techniques are used for modifications on concurrent computer systems with

multiple processes. The system proposed the use of temporal logic operators in

ACTL for representation of properties in the computer system. In this framework

only transitional elements in the given Kripke structure were modified, no actual

state changes occur in the system repair.

In [59, 60], Harris and Ryan used a similar approach, developing a tool that inte-

grated system features into sections of existing software using McMillans SMV. The

approach utilised notions of theory change and belief update to design a framework

for novel feature integration in the SMV model checking language. This research

generated a feature integration tool in the SMV environment, the SMV Feature In-

tegrator, or SFI. In [60], they went on to prove a theorem showing the functionality

SFI provided was an update operation. Earlier work showing the preliminary results

of feature integration using SMV can be found in [81].
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In [57], Groce and Visser devised an automatic method for extracting infor-

mation out of multiple counterexample instances to better determine the cause of

a fault. The proposed system used positive and negative sets of counterexamples

generated from SLAM Java code to find counterexamples which exhibited the same

error occurring at the error states. In [87], Staber et al. proposed a method for error

localisation and system repair of sequential systems under the Vis model checking

environment. The system used a game based strategy such that a winning strategy

was implied found if there was a correction valid for all possible inputs of the system.

Specifications could be expressed as LTL properties.

Another repair framework was implemented in Vis by Jobstmann et al. in their

paper Program Repair as a Game [68]. In this paper, Jobstmann et al. theorised

a game based framework for finite state models and automaton, representing LTL

specifications. Finding a winning strategy corresponded to determining a repair

for the finite model. This approach successfully used localisation techniques and

proposed an optimal strategy, adding extra states needed to be avoided, and thus

provided heuristics for devising memoryless strategies. Complexity was given as

polynomial on the size of the model and exponential on the temporal property. A

similar approach by Staber was given in [87], which used a similar game-based LTL

approach on finite state machines for fault localisation and correction in sequential

circuits. The framework set the games win state as when a correction was determined

for all inputs, where a memoryless strategy was preferred. When a solution was

found, components were replaced by new functions satisfying the property. In the

paper, the technique was demonstrated on a locking algorithm and a minimal input

function to promote better understanding. The system was also implemented with

the Vis model checker.

In the 2006 paper [37], Dennis et al. put forward a theory for proof-directed

debugging, proposing the use of proofs in functional programs in combination with

other debugging and localising techniques (including counterexample generation),

to locate bugs in a program. Proof planning was posed as a method of guiding the

verification of the program and assist in the localisation process. Methods posed

for proof planning include the use of loop invariants, induction schemes, corrective

predicate construction and middle out reasoning. Highlighted in this paper was the

lack of support by verification tools in general for identifying the cause of faults,
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methods for fault localisation and recommended repairs, as also mentioned in [27].

Similarly again in 2006, Griesmayer et al. provided a method of fixing faults in

C programs with boolean variables in a game based framework [56]. In this system,

the protagonist picked some implementation for an incorrect program, if one could

be found which did not require memory or stack contents, a repair on the boolean

program was found. This system was completely symbolic, counterexample and

game strategy based. The framework was applied to abstracted boolean programs

produced from the Microsoft SLAM environment.

In [55], Gorogiannis and Ryan put forth a minimal refinement model for the

addition of new specifications to existing designs. Using models in SMV, a system

was proposed which allowed the addition of extra design specifications to a sys-

tem expressed as transition systems and computational paths. Designs could be

minimally refined in such a way as to not invalidate existing specifications, whilst

satisfying required introduced behaviour expressed in universal computational tree

and modal logic. To show system effectiveness, an example of mutual exclusion was

demonstrated attempting refinements to the model by including further liveness

properties.

From these methods, a pattern of formalisation of the repair process can be

inferred; up to this point no generalised abstract framework for providing candidate

modifications had been developed. All rely on specific programming languages and

were limited in the sense of their use of temporal properties, constraint handling,

complexity handling and strategies for performing the update.

1.4 Contributions

The central aim of research conducted in this thesis is to develop a computer-aided

repair tool for system models, guided by counterexamples derived from model check-

ing sessions, and extending previous update techniques. The desired outcome of this

process is a corrected local model fix that can be reintegrated back into the origi-

nal Kripke structure to affect satisfaction of the original system specification. The

technique enlisted is illustrated in Figure 1.7. This differs from previous methods
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of update, shown in Figure 1.2, in that only counterexamples are altered to satisfy

the global model. In previous iterations the entire model was accepted as input,

posing an infeasible search space for candidate fixes. In addition to this, our re-

vised approach takes into account developer defined action and variable constraints

through constraint automata, to better direct update such that the resultant fix

better reflects required specifications.

The contributions of this thesis are as follows. We include the theoretical foun-

dations for local model update and a prototype tool demonstrating local model

update for simple counterexample fixes based on ACTL specifications. Extending

this is the theory underpinning constraint automata guided model update that we

use as a method for deriving updates based on constraints. Following the founda-

tions, we provide algorithms for implementation considerations for localised model

update and included action and variable constraint automata guidance. Finally, we

generate a compiled prototype in the Python language which demonstrates tree-like

local model updates on counterexamples generated from NuSMV model checking

sessions. To demonstrate the applied approaches we include three sufficiently com-

plex case studies in the following section. As discussed in the literature review for

this dissertation, the author is aware of no other approach to performing model

update which utilises counterexample traces as a means of localising specification

violating behaviour in the represented system.

Figure 1.7: Proposed tree-like local model update approach.
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1.4.1 Formalised Framework for Local Model Update

In the author’s research, ACTL is the selected logic for describing behaviours of

the hardware or software input model. ACTL is focused on for its ability to, in

most cases, generate linear counterexamples which can be used to construct tree-

like counterexamples [11, 27]. Further to this, software models in general are finite

state machines and thus, to be represented, need a format that can be expressed in

finite terms. ACTL formulas are interpreted as infinite computational trees derived

from finite state transition systems, where each path in the tree describes a series

of states.

In the theoretical portion of this thesis, we provide the formal underpinnings for

the technique, including formula parsing and the semantic framework of ACTL over

explicit state Kripke structures. We define a set of weak bisimulation based minimal

change criteria, which gives us a more accurate definition for what is a smaller

distance between tree-like models. This is necessary when trying to find an optimal

update from the modification search space, based on what is possible that satisfies

the property. We analyse the relationship of the approach to traditional belief

update, providing proofs of the connection between the local update technique and

the AGM update postulates first proposed in [70]. With minimal change properties

and ACTL defined over Kripke structures, essential semantic characterisations are

provided. These characterisations give update rules for each semantic satisfaction

rule in ACTL in relation to models, such as AF and AG. This formalisation process

allows us to develop a more efficient approach to local model update. From these

characterisations the complexity of the approach for given cases is also studied.

With these characterisations and the structure of our temporal logic, algo-

rithms are then designed for routing specific updates guaranteeing the most minimal

changes to the localised updates are returned. ACTL local model update ensures

that only the region pertaining to the fault is brought under consideration for up-

date. This saves having to provide possible modifications which occur on a greater

subsection and are more likely larger. We then implement our prototype ACTL sys-

tem based on the theoretical approach and apply it to case studies to demonstrate

its efficacy.
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1.4.2 Case Studies

In this thesis, we apply the technique to some well known case studies in computer

science to illustrate its use and demonstrate its application to real world domains.

For this work we have selected three well known models which can be explicitly

represented in the NuSMV modelling language. As summarized earlier, we apply

the technique to the microwave oven Kripke structure, a hardware model repeatedly

illustrated as a fundamental example for model checking. We present an application

to the semaphore sharing model, a problem demonstrating semaphore deadlocks

occurring between resources to demonstrate the update process on a sufficiently

complex application. We apply the technique to a more complex case of the Sliding

Window Protocol, used for buffering frame windows in TCP/IP, as demonstrated

in [48, 102, 104]. We experiment on the protocol using varied window sizes to note

how complexity effects the approach.

Finally, we give a demonstration of update in the SLAM environment on a

modelled mutual exclusion problem, using variable constraint automata to define

acceptable behaviour in determining candidate updated models.

1.4.3 Implementation of ACTL Tree-like Local Model

Updater

This research introduces the use of l-Up, a software package developed for the gener-

ation of candidate fixes over NuSMV counterexamples. The implementation of this

local model update system has been completed in the Python programming lan-

guage. Python was chosen for its clarity in syntax, general philosophy of readability

and pragmatism as to allow future developers of these techniques an easier learning

curve. This will hopefully promote better integration of update methods within the

model checking community.

Python is also known for being a high level language, is used for rapid pro-

totyping and integrates elements of the object oriented, functional and imperative

programming paradigms. Python has many applications in AI and has been gain-

ing more ground in popularity recently over more traditional languages, based on
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developer circles and companies that are hiring and seeking Python based skills.

C/C++ was also considered as a possible language but ultimately was not used.

While C/C++ is known for its stability, speed and widespread use for model check-

ing tools and system level implementations, the goal of this research project is the

promotion of integration of counterexample and automata guided update and the

generation of an initial prototype, which researchers can use out of the box and anal-

yse. System models interpreted by the update system are not written in the Python

language, but expressed using the NuSMV modelling language and are passed as ar-

gument to NuSMV for pre-verification. We analyse underlying system design written

in the Python language in Chapter 4. Abstract algorithms developed in the earlier

chapter and the design philosophy of model update are integrated into the designed

local model update system.

To perform model checking and counterexample extraction the software utilises

NuSMV as a backend. With these counterexamples, local update methods imple-

ment the derived theoretical results in the form of algorithms. This includes propo-

sitional update operations, characterisations based on weak bisimulation minimal

change and search algorithms for finding the most minimal candidate change. The

system returns atomic changes which satisfy the initial property. Algorithms are

designed with modularity and future extension in mind. Bisimulation ordering and

minimal change criteria are swappable such that other ordering heuristics can be

applied.

1.4.4 Constraint Automata in Update

Although we have defined a method for optimising the application scope of model

update, it is still the case that model update only takes into account properties

expressed in temporal logic; we cannot direct the update process to only derive

modifications which adhere to action or variable constraints expressed by the system

designer. This could be useful, as a designer may require certain functionality to

persist but the desired property still satisfied within the update region. For this

reason, we extend the approach with the application of variable and action constraint

automata, such that derived updates conform to detailed behaviour in the automata

defined by the designer.
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We provide the essential theoretical aspects of constraint automata, including au-

tomata definition for action and variable constraints and the semantics for automata

over tree-like model paths. From these semantics, we extrapolate characterisations

which can be used for implementing extension algorithms on local update algorithms

and analyse the underlying complexity for performing update with constraints taken

into account. Finally with algorithms defined, we show a case study which demon-

strates the use of constraint automata on a modelled version of the mutual exclusion

problem in Chapter 5, Section 5.3.

1.5 Organisation of Dissertation

The rest of this thesis is organised as follows. In this chapter we have given a back-

ground of model checking, system repair, diagnosis and model update and have given

an overview of the proposed update technique. Chapter 2 provides the foundational

syntax and semantics of ACTL and leads into the theoretical results of tree-like local

model update, including minimal change with weak bisimulation, property persis-

tence, the links between belief update and tree-like local model update, complexity

results and theory of constraint automata compliance.

Chapter 3 gives the central algorithms for tree-like local model update, describing

the primary concept guiding design from characterisations derived in the earlier

chapter. In Chapter 4, we look at implementation specific details which provide the

programmatic interface to allow local model update to function, such as formula

parsing, SMV program variable domain extraction, elements fundamental to update

and structures for constraint automata. Chapter 5 contains three well known case

studies for tree-like local model update to demonstrate its applicability as a tool

for system repair. Finally we conclude with Chapter 6, giving a summary of the

dissertation and propose future directions for research into this field. Appendix A

contains the user manual for the ACTL local model update prototype. Appendix B

contains a detailed model of the Gigamax Cache Coherence Protocol, used as an

example to show details of implementation. Appendix C contains counterexamples

derived from model checking sessions used in the case studies, illustrating local model

updates efficacy.



Chapter 2

Foundations of ACTL Tree-like

Local Model Update

In this chapter we present the preliminary concepts supporting tree-like local

model update, reviewing Kripke structures, the syntax and semantics of ACTL, and

definitions for tree-like model update. We also give examples to clarify and reinforce

the fundamental concepts of local model update. We then perform semantic charac-

terisations, study the relationship between local model update and belief update and

focus on satisfaction of persistence properties. We analyse computational properties,

giving the main complexity result and some review of computing typical tree-like

local model updates. We conclude the chapter by giving the theoretical aspects of

introducing constraint automata as a means of better directing the update process

towards modifications which comply to action and variable constraints.

2.1 ACTL Syntax and Semantics

To start, we review the syntax and semantics of ACTL and the background to local

model update. Readers are referred to [24, 66, 101] for a deeper background into

model checking, CTL and ACTL. ACTL is a fragment of Computation Tree Logic

(CTL) that has attracted considerable studies from researchers, e.g. [11, 27, 77,

85]. CTL is a temporal logic formalism with the purpose of describing how states

transition between one another in some reactive system [24].
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Definition 2.1. [103] Universal Computational Tree Logic (ACTL) has the follow-

ing syntax given in Backus-Naur Form1:

φ ::= ⊤ |⊥| p | ¬p | (φ ∧ ψ) | (φ ∨ ψ) | (p→ ψ) | AX(φ) | AG(φ) | AF(φ) | A[φ U ψ]

where p is any propositional atom (variable).

Negation is restricted in application to propositional atoms (i.e. ¬p is an ACTL

formula if p is one). ACTL differs from CTL in that ACTL employs the use of

only the universal path quantifier A and excludes usage of the existential branch

quantifier E. A allows checks over all branches to assert the necessity of some

condition be true over all paths from some state.

Besides Boolean connectives, ACTL provides linear time operators X meaning

‘neXt state’, F ‘some Future state’, G ‘Globally true’ and U ‘Until’. Each time

operator is coupled with the universal path quantifier to specify the scope the tem-

poral token applies to [24]. It should be noted also AU is the only binary temporal

operator.

Convention 2.1. [24] Unary connective ¬, and temporal operators AX, AF , AG

take precedence in parsing. Binary operators are next, in order of ∨ and ∧, followed

by → and AU .

Definition 2.2. Let AP be a set of propositional variables. A Kripke structure M

over AP is a triple M = (S,R,L), where

1. S is a finite set of states;

2. R ⊆ S × S is a binary relation representing state transitions;

3. L : S → 2AP is a labeling function that assigns each state with a set of

propositional variables.

A common method of visualising a Kripke structure is to see it as a rooted

graph (S,R), whose nodes are labelled by L. Here, each node is coupled with a

set of propositional atoms true at that state, each node representing a state in the

system. Nodes are connected through relations R and the system may transition

state to state based on these connections.

1Here we follow the style of [66] to define ACTL syntax, the original notation for CTL is
attributed to [7].
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Figure 2.1: Rooted state transition graph.

We evaluate an ACTL formula over a Kripke structure. A path in a Kripke

structure from a state is a(n) (infinite) sequence of states. Note that for a given

path, the same state may occur an infinite number of times in the path (i.e. the

path contains a loop). To simplify our following discussions, we may identify states

in a path with different position subscripts, although states occurring in different

positions in the path may be the same. In this way, we can say that one state

precedes another in a path without much confusion. Now we can present useful

notions in a formal way.

Let M = (S,R,L) be a Kripke structure and s0 ∈ S. A path in M starting from

s0 is denoted as π = [s0, · · · , si, si+1, · · · ], where (si, si+1) ∈ R holds for all i ≥ 0.

If π = [s0, s1, · · · , si, · · · , sj , · · · ] and i < j, we denote si < sj .

Definition 2.3. Let M = (S,R,L) be a Kripke structure. Given any s ∈ S, we

define whether an ACTL formula φ holds in M at state s. We write this as (M, s) |=

φ. The satisfaction relation |= is defined by structural induction on ACTL formulas

2:

1. (M, s) |= ⊤ and (M, s) 6|= ⊥ for all s ∈ S.

2. (M, s) |= p iff p ∈ L(s).

3. (M, s) |= ¬p iff (M, s) 6|= p.

4. (M, s) |= p→ φ iff (M, s) 6|= p or (M, s) |= φ.

5. (M, s) |= φ1 ∧ φ2 iff (M, s) |= φ1 and (M, s) |= φ2.

6. (M, s) |= φ1 ∨ φ2 iff (M, s) |= φ1 or (M, s) |= φ2.

7. (M, s) |= AXφ iff ∀s1 such that (s, s1) ∈ R, (M, s1) |= φ.

8. (M, s) |= AGφ iff ∀π = [s0, s1, . . .](s0 = s) and ∀si ∈ π, (M, si) |= φ.

9. (M, s) |= AFφ iff ∀π = [s0, s1, . . .](s0 = s), ∃si ∈ π such that (M, si) |= φ.

10. (M, s) |= A[φ1 U φ2] iff ∀π = [s0, s1, . . .](s0 = s), ∃si ∈ π

such that (M, si) |= φ2 and ∀j < i, (M, sj) |= φ1.

2Following the conventions of [66].



2.1. ACTL Syntax and Semantics 38

In Clause 1, we see that a state in a model vacuously satisfies a tautology and

does not satisfy a contradiction. Clause 2 states that if some propositional atom is

an element of the label function mapped to the state, we can say the state satisfies

the propositional atom. Similarly, Clause 3 states that if a model does not satisfy

some proposition p then the same model satisfies the negation. In Clause 5 - 7, the

associated truth value of some formula relies on the truth value of its subformula(s)

φ0 or φ1 at the given state. From these clauses, the truth of AX is contingent on the

truth of its subformula φ at the current states immediate transitory states, linked

through state relations R. If any one immediate transition of s does not satisfy the

subformula, AXφ is not satisfied at (M, s). Clauses 8 - 11 also hold this property,

but satisfaction of these temporal tokens is contingent on the truth values of all

states available through paths π. As an example, the truth value of AFφ relies on

the reachability of some state that satisfies φ along each path possible from the

initial state s. This means not only immediate transitions need to be checked, but

all states materially connected in a path from the origin state.

From these clauses, it is clear to see that individual states satisfy propositional

formulas, paths satisfy temporal properties (AX being the base case) and branching

behaviour in the transition relation satisfies quantification of temporal properties. It

should be noted that implication can be represented, but only where the antecedent

is a propositional atom. This stems from ACTL requiring negation be restricted to

propositional atoms and material implication.

Example 2.1. In Figure 2.1 we give an example of a simple state transition graph.

State s1 is the initial state and holds the propositional atoms p and q true. Similarly

s2 holds q and r true and s3 holds r true. Kripke structure have a two value semantics

propositional atoms not true at some state are false. We unwind this transition graph

to an infinite tree illustrated in Figure 2.5. From this unwound model we can see

which ACTL formulas it satisfies. We can see from the initial state M, s |= AXr,

M, s |= AGAFr and M, s |= AG(A[p U r]). Its also the case that M, s 6|= AFq

and M, s 6|= AGp witnessed by the counterexamples π1 = [s1, s3] and π2 = [s1, s2],

respectively.

As a convention, with respect to satisfying some Kripke structure, ACTL formu-

las may be referred to as a system property or specification in that when checking
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Figure 2.2: Unwound transition state diagram as an infinite tree.

the formula, we see the formula as holding some property the system should embody,

or that the formula specifies some behaviour inherent in the model. Furthermore,

there exists some usable overlap between formulas in the universal and existential

fragments of CTL. To be able to derive counterexamples from some specification,

negation needs to be restricted to propositional atoms and the resultant formula

must only contain universal quantifiers over paths [27].

Now we introduce the concept of tree-like Kripke structures [27]. In tree-like

local model update, Kripke structures have constraints applied to their transition

graph, allowing an overall tree structure with embedded cycles or self loops.

Definition 2.4. Let G be a directed graph. A Strongly Connected Component

(SCC) C in G is a maximal subgraph of G such that every node in C is reachable

from every other node in C along a path entirely contained within C. C is nontrivial

iff either it has more than one node or it contains one node with a self-loop. The

component graph c(G) of G is the graph where the vertices are given by the SCCs

of G, and where two vertices of c(G) are connected by an edge if there exists an edge

between vertices in the corresponding SCCs. Then we say a graph G is tree-like if

1. all its SCCs are cycles;

2. c(G) is a directed tree.

We denote a child where v, v′ are two nodes in G. Then we can say that v is a

child of v′ in G iff v is a child of v′ in graph c(G).
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We should note that condition (1) is non-trivial because some SCCs may not

be cycles. For instance, in a graph G = (V, E), where V = {s1, s2, s3} and

E = {(s1, s2), (s2, s3), (s3, s3), (s3, s2)}, the subgraph G′ = ({s2, s3}, {(s2, s3),

(s3, s3), (s3, s2)}) is a SCC, but it is not a cycle because edge (s3, s3) also forms

a self-loop.

Consider a Kripke model (M, s0), where M = (S,R,L) and s0 ∈ S. We say

that (M, s0) is a tree-like Kripke model if its corresponding graph G(M) = (S,R)

is tree-like. In this case, we call the initial state s0 the root of this tree-like model.

Since a tree-like Kripke model may not be a strict tree (e.g. it may contain some

cycles along a branch), we cannot follow the traditional notions of child and parent

in a tree-like model. Instead, we define the following new concepts. We say state s

is an ancestor of state s′, if there is a path π = [s0, · · · , s, · · · , s
′, · · · ] where s′ does

not occur in the section [s0, · · · , s] s
′ 6< s, s < s′ in π and for all s∗ ∈ π where s∗ < s,

s∗ 6= s′.

s is a parent of s′ if s is an ancestor of s′ and (s, s′) ∈ R. In this case, we also

call s′ is a successor of s. A state s is called leaf if it is not an ancestor of any other

states. A tree-like model (M ′, s′) is called a submodel of (M, s), if M ′ = (S′, R′, L′),

s′ ∈ S′, S′ ⊆ S, R′ ⊆ R, for all s∗ ∈ S′, L′(s∗) = L(s∗), and in M , s′ is an ancestor

of all other states in M ′. Figure 2.3 from [27] shows an example of a tree-like model

that represents a counterexample for a specific ACTL formula.

Figure 2.3: A counterexample for AG¬x∨AF¬y.

Clarke et al. [27] proved an important result regarding ACTL model checking,

stating that if an ACTL formula is not satisfied in a Kripke structure, then this

Kripke structure must contain a tree-like counterexample with respect to this for-

mula.

Theorem 2.1. [27] ACTL has tree-like counterexamples.
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2.2 Tree-like Model Update

As we mentioned earlier, one major obstacle restricting the application of CTL

model update in practical domains is that very often we have to deal with a large

Kripke structure, and the update may also often lead to model explosion [101].

This motivates us to focus on the tree-like counterexample update. Since we can

view a tree-like counterexample as a partial Kripke structure which is usually small

and contains the violation of the specification, the update on the counterexample

actually provides a computer aided approach for effective system modifications. Here

we define what makes one update better than another proposed model modification.

2.2.1 Defining Minimal Change

Now the question becomes which criteria we are aiming for when we wish to update

a tree-like ACTL Kripke model to satisfy the underlying property. Intuitively, we

would like our update approach to adhere to the following general principles:

1. Retain the original structure as much as possible;

2. Do not change the structure components that are irrelevant to satisfying the

property;

3. Allow changes on both transition relations and states in the structure.

Principles 1 and 2 are quite obvious; whenever possible, we always like to change

the structure as little as possible to make it satisfy the property. Principle 3, on the

other hand, means that our update should be flexible enough in order to represent

rational modifications in system repairs.

Now we start to formalise the update on tree-like Kripke structures. For brevity,

in this thesis we will call (M, s) a tree-like Kripke model without explicitly mention-

ing the corresponding tree-like Kripke structure M = (S,R,L) where s ∈ S. We

also define the difference metric Diff(X,Y ) = (X \ Y ) ∪ (Y \ X), where X,Y are

two sets, considering that the underlying Kripke structure models a specific system

behaviours.
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Definition 2.5 (Weak bisimulation). Let (M, s) and (M1, s1) be two tree-like Kripke

models where M = (S,R,L) and M1 = (S1, R1, L1) and s ∈ S and s1 ∈ S1. We

say that a binary relation H ⊆ S × S1 is a weak bisimulation between (M, s) and

(M1, s1) if:

1. H(s, s1);

2. given v, v′ ∈ S such that v is a parent of v′, for all v1 ∈ S1 such that H(v, v1),

the condition holds: (a) if v1 is not a leaf, then there exists successor v′1 of v1

such that H(v′, v′1), or (b) if v1 is a leaf, then H(v′, v1) (forth condition);

3. given v1, v
′
1 ∈ S1 such that v1 is a parent of v′1, for all v ∈ S such that H(v, v1),

the condition holds: (a) if v is not a leaf, then there exists a successor v′ of v

such that H(v′, v′1), or (b) if v is a leaf, then H(v, v′1) (back condition).

Definition 2.5 is inspired from the concept of bisimulation on Kripke models in

classical modal logics [8]. It is observed that for any two tree-like models, there

exists at least one weak bisimulation between them. Usually, there are more than

one such weak bisimulations.

Example 2.2. In Figure 2.4 we represent two models (M, s) and (M ′, s′), with

transition graph (S,R) and (S′, R′) where

(S,R) = ({s1, s2, s3, s4, s5}, {(s1, s2), (s1, s3), (s3, s5), (s5, s4), (s4, s3)})

and (S′, R′) = ({s′1, s
′
2, s

′
3}, {(s

′
1, s

′
2), (s′1, s

′
3)}). A weak bisimulation H can be

found where H = {(s1, s
′
1), (s2, s

′
2), (s5, s

′
3), (s4, s

′
3), (s3, s

′
3)}.

Figure 2.4: A bisimulation mapping between (M, s) and (M ′, s′).
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Definition 2.6 (Bisimulation ordering). Let (M, s), (M1, s1) and (M2, s2) be three

tree-like models, where M = (S,R,L), M1 = (S1, R1, L1), M2 = (S2, R2, L2), and

s ∈ S, s1 ∈ S1 and s2 ∈ S2, H1 and H2 be two weak bisimulations between (M, s)

and (M1, s1) and between (M, s) and (M2, s2) respectively. We say that H1 is as

similar as H2, denoted by H1 ≤ H2, if for all nodes v ∈ S, the following condition

holds:

1. there exists an ancestor v′ of v such that for all v1 ∈ S1 and v2 ∈ S2 satisfying

H1(v
′, v1) and H2(v

′, v2), Diff(L(v
′), L1(v1)) ⊂ Diff(L(v′), L2(v2)); or

2. for all v1 ∈ S1 and v2 ∈ S2 satisfying H1(v, v1) and H2(v, v2), Diff(L(v), L1(v1))

⊆ Diff(L(v), L2(v2)).

We write H1 < H2 iff H1 ≤ H2 but H2 6≤ H1.

Definition 2.6 specifies how we compare two weak bisimulations among three

tree-like models. Intuitively, if H1 and H2 are two weak bisimulations between

(M, s) and (M1, s1), and between (M, s) and (M2, s2) respectively, then H1 ≤ H2

means that M1 represents at least the same information about M as M2 does under

H1 and H2 respectively.

Note that if (M1, s1) and (M2, s2) are identical, then it is still possible to have

two different weak bisimulations between (M, s) and (M1, s1). Hence, we are always

interested in that H1 where there is no other H ′
1 between (M, s) and (M ′, s′) such

that H ′
1 < H1. We call such H1 a minimal weak bisimulation between (M, s) and

(M ′, s′), which, as should be noted, is not necessarily unique.

Example 2.3. In Figure 2.5 we have a model (M, s) with bisimulation relations with

(M ′, s′) and (M ′′, s′′). As in Example 2.2, (M ′, s′) and (M ′′, s′′) have the same tran-

sition graph as initially in (S′, R′) and (M, s) as (S,R). In this example we see that

H1 < H2 due to the difference between the labels in s1 and s′′1 is greater than the dif-

ference between the labels in s1 and s′1 (i.e. Diff(L(s1), L(s
′
1)) ⊂ Diff(L(s1), L(s

′′
1))).
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Figure 2.5: Bisimulation ordering where H1 < H2.

Definition 2.7 (Tree-like model update). Let φ be an ACTL formula and (M, s)

a tree-like model such that M 6|= φ. A tree-like model (M1, s1) is called a result of

updating (M, s) with φ, denoted as Updatet((M, s), φ), if and only if

1. (M1, s1) |= φ;

2. there is a weak bisimulation H1 between (M, s) and (M1, s1) such that there

does not exist another tree-like model (M2, s2) satisfying (M2, s2) |= φ and a

weak bisimulation H2 between (M, s) and (M2, s2) such that H2 < H1. In this

case we say that (M1, s1) is an update result under H1.

Condition 1 in Definition 2.7 simply states that after the update, the result-

ing tree-like model should satisfy the updating formula. Condition 2 ensures that

the resulting tree-like model is minimal from the original model under some weak

bisimulation. We also use Res(Updatet((M, s), φ)) to denote the set of all possible

resulting tree-like models of updating (M, s) with φ.

Example 2.4. Consider a tree-like model M as described in Figure 2.6, which is a

counterexample of AG¬x ∨ AF¬y. Then according to Definition 2.7, we can verify

that (M ′, s′1) is a result of the update of (M, s) with AG¬x∨AF¬y, where (M ′′, s′′2)

is not although it also satisfies AG¬x∨AF¬y, as (M ′′, s′′2) represents more changes

from (M, s) than (M ′, s′1) does.
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Figure 2.6: Updating (M, s) with AG¬x ∨ AF¬y.

2.3 Semantic Properties

In this section we analyse the necessary semantic properties of tree-like local model

update. We will focus our analysis on the relationship between the local model

update approach and the traditional method of belief update (knowledge systems),

and also review the property of satisfaction persistence that we expect local model

update to satisfy.

2.3.1 Relationship to Belief Update

In [70], Katsuno and Mendelzon discovered that the original AGM revision pos-

tulates cannot precisely characterise the feature of belief update. The following

alternative update postulates have been proposed. They argued that any propo-

sitional belief update operators should satisfy these postulates. For the following

postulates (U1) - (U8), all occurrences of T, µ, α etc. are propositional formulas.

(U1): T ⋄ µ |= µ.

(U2): If T |= µ then T ⋄ µ ≡ T .

(U3): If both T and µ are satisfiable then T ⋄ µ is also satisfiable.

(U4): If T1 ≡ T2 and µ1 ≡ µ2 then T ⋄ µ1 ≡ T2 ⋄ µ2.

(U5): (T ⋄ µ) ∧ α ≡ T ⋄ (µ ∧ α).

(U6): If T ⋄ µ1 |= µ2 and T ⋄ µ2 |= µ1 then T ⋄ µ1 ≡ T ⋄ µ2.

(U7): If T is complete (i.e. has a unique model) then (T ⋄ µ1) ∧ (T ⋄ µ2)

|= T ⋄ (µ1 ∨ µ2).

(U8): (T1 ∨ T2) ⋄ µ ≡ (T1 ⋄ µ) ∨ (T2 ⋄ µ).

As shown by Katsuno and Mendelzon in [70], postulates (U1) - (U8) precisely

capture the minimal change criterion for update that is defined based on certain

partial ordering on models.
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In order to compare our tree-like model update with the traditional knowledge

based update, we need to first define a tree-like update operator on ACTL formu-

las. Let φ be an ACTL formula, M = (S,R,L) a tree-like Kripke structure, and

Initial(S) ⊆ S the initial states of M . For some s ∈ Initial(S), we call (M, s) a

tree-like model of φ if (M, s) |= φ. We use Modt(ψ) to denote the set of all tree-like

models of ψ. We also assume that the underlying language is finite, i.e. the set of

propositional variables is finite, because Katsuno and Mendelzon’s postulates (U1)

- (U8) are based on finite languages [70].

Proposition 2.1. If ψ is a satisfiable ACTL formula, then Modt(ψ) 6= ∅.

Given two ACTL formulas ψ and φ, we specify a tree-like update operator ⋄t as

follows:

Modt(ψ ⋄t φ) =
⋃

(M,s)∈Mod
t(ψ)

Res(Updatet((M, s), φ)). (2.1)

Theorem 2.2. Operator ⋄t satisfies all Katsuno and Mendelzon update postulates

(U1) - (U8), in the sense that for each form ψ |= φ in the postulates, we replace it

as Modt(ψ) ⊆ Modt(φ).

Proof. Here we show that ⋄t satisfies (U1) through (U8).

To prove ⋄t satisfies (U1) we show Modt(T ⋄µ) ⊆ Modt(µ). Since Modt(T ⋄tµ) =
⋃

(M,s)∈Mod
t(T ) Res(Update

t((M, s), µ)) where for each (M, s) ∈ Modt(T ),

Updatet((M, s), µ) ∈ Modt(µ) so Modt(T ⋄ µ) ⊆ Modt(µ).

(U2) In proving if T |= µ then T ⋄ µ ≡ T , this equates to Modt(T ) ⊆ Modt(µ)

then Modt(T ⋄t µ) ⊆ Modt(T ). From the prior definition we know Modt(T ⋄t µ) =
⋃

(M,s)∈Mod
t(T ) Res(Update

t((M, s), µ)). As T |= µ, every model selected for µ will

be in Modt(T ), such Updatet((M, s), µ) = (M, s) and T ⋄t µ ≡ T when T |= µ.

(U3) By definition for any formula µ that is satisfiable, Modt(µ) 6= ∅, i.e. there

will be a set of tree-like models associated with any satisfiable formula, for T ⋄ µ

to be satisfiable it will have corresponding tree-like models. Assume T ⋄ µ is not

satisfiable, but T and µ are. This is equivalent to saying Modt(T ) 6= ∅, Modt(µ) 6= ∅

and Modt(T ⋄t µ) = ∅. We update T by µ, Res(Updatet((M, s), µ)) will have tree-

like models as µ is satisfiable, and since Modt(T ) 6= ∅ there will be some (M, s) ∈
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Modt(T ) selected where (M, s) ∈ Res(Updatet((M, s), µ)), thus Modt(T ⋄t µ) 6= ∅.

Thus the update operator ⋄t produces satisfiable formulas given satisfiable formulas

are used.

Proving ⋄t for (U4) it is sufficient to prove that for all (M, s) ∈ Modt(T1) that

if Modt(T1) = Modt(T2) and Modt(µ1) = Modt(µ2) then Res(Updatet((M, s), µ1)) =

Res(Updatet((M, s), µ2)). To show this we prove that Res(Updatet((M, s), µ1)) ⊆

Res(Updatet((M, s), µ2)) and its back condition Res(Updatet((M, s), µ2)) ⊆

Res(Updatet((M, s), µ1)). Assume Modt(T1) = Modt(T2) and Modt(µ1) = Modt(µ2)

but Res(Updatet((M, s), µ1)) 6⊆ Res(Updatet((M, s), µ2)). Let the model (M ′, s′) ∈

Res(Updatet((M, s), µ1)) and (M ′, s′) ∈ Modt(T1). Suppose (M ′, s′) 6∈

Res(Updatet((M, s), µ2)). Then (M ′′, s′′) ∈ Res(Updatet((M, s), µ2)) such H ′′ < H ′

and (M ′′, s′′) ∈ Modt(T1). This contradicts (M
′, s′) ∈ Res(Updatet((M, s), µ1)) and

Res(Updatet((M, s), µ1)) ⊆ Res(Updatet((M, s), µ2)).

Now we prove Res(Updatet((M, s), µ2)) ⊆ Res(Updatet((M, s), µ1)). Assume

Modt(T1) = Modt(T2) and Modt(µ1) = Modt(µ2) but Res(Updatet((M, s), µ2)) 6⊆

Res(Updatet((M, s), µ1)). Let the model (M ′, s′) ∈ Res(Updatet((M, s), µ2)) and

(M ′, s′) ∈ Modt(T2). Suppose (M ′, s′) 6∈ Res(Updatet((M, s), µ1)). Then (M ′′, s′′) ∈

Res(Updatet((M, s), µ1)) such H
′′ < H ′ and (M ′′, s′′) ∈ Modt(T2). This contradicts

(M ′, s′) ∈ Res(Updatet((M, s), µ2)) and Res(Updatet((M, s), µ2)) ⊆

Res(Updatet((M, s), µ1)).

To prove that ⋄t satisfies (U5), it is sufficient to show that for each (M, s) ∈

Modt(T ), Res(Updatet((M, s), µ))∩Modt(α) ⊆ Res(Updatet((M, s), µ∧α)). Consider

a tree-like model (M ′, s′) ∈ Res(Updatet((M, s), µ)) ∩ Modt(α). Suppose (M ′, s′) 6∈

Res(Updatet((M, s), µ ∧ α)). Then this implies two cases: (a) (M ′, s′) 6|= µ ∧ α;

(b) there exists another tree-like model (M ′′, s′′) ∈ Modt(µ ∧ α) such that H ′′ <

H ′, where H ′, H ′′ are weak bisimulations between (M, s) and (M ′, s′), (M, s) and

(M ′′, s′′) respectfully. If it is the case (a) then (M ′, s′) 6∈ Res(Updatet((M, s), µ)) ∩

Modt(α), so the result holds. If (b) is the case, then it means that (M ′, s′) 6∈

Res(Updatet((M, s), µ)) according to Definition 2.7, and hence (M ′, s′) 6∈

Res(Updatet((M, s), µ)) ∩ Modt(α). The result also holds.
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For ⋄t to satisfy (U6) it is sufficient to prove for any given (M, s) ∈ Modt(T ) if

Res(Updatet((M, s), µ1)) ⊆ Modt(µ2) and Res(Updatet((M, s), µ2)) ⊆ Modt(µ1) then

Res(Updatet((M, s), µ1)) = Res(Updatet((M, s), µ2)). To show this we prove that

Res(Updatet((M, s), µ1)) ⊆ Res(Updatet((M, s), µ2)). Let an updated tree-like model

(M ′, s′) ∈ Res(Updatet((M, s), µ1)). Then (M ′, s′) |= µ2. Suppose (M ′, s′) 6∈

Res(Updatet((M, s), µ2)), then there exists a different admissible model (M ′′, s′′) ∈

Res(Updatet((M, s), µ2)) such that there is a bisimulation ordering where H ′′ < H ′.

Also note that (M ′′, s′′) |= µ1. This contradicts (M
′, s′) ∈ Res(Updatet((M, s), µ1)).

With this we have Res(Updatet((M, s), µ1)) ⊆ Res(Updatet((M, s), µ2)).

Now we prove that Res(Updatet((M, s), µ2)) ⊆ Res(Updatet((M, s), µ1)). Let

an updated tree-like model (M ′, s′) ∈ Res(Updatet((M, s), µ2)). Then (M ′, s′) |=

µ1. Suppose (M ′, s′) 6∈ Res(Updatet((M, s), µ1)), then there exists a different ad-

missible model (M ′′, s′′) ∈ Res(Updatet((M, s), µ1)) such that there is a bisimula-

tion ordering where H ′′ < H ′. Also note that (M ′′, s′′) |= µ2. This contradicts

(M ′, s′) ∈ Res(Updatet((M, s), µ2)). With this we have Res(Updatet((M, s), µ2)) ⊆

Res(Updatet((M, s), µ1)).

(U7) If T is complete (i.e. has a unique model) then (T ⋄ µ1) ∧ (T ⋄ µ2) |=

T ⋄ (µ1∨µ2). We need to prove Res(Updatet((M, s), µ1)) ∩ Res(Updatet((M, s), µ2))

⊆ Res(Updatet((M, s), µ1 ∨ µ2)), where (M, s) is the unique model of T (noting

T is complete). Let (M ′, s′) ∈ Res(Updatet((M, s), µ1)) ∩ Res(Updatet((M, s), µ2)).

Suppose (M ′, s′) 6∈ Res(Updatet((M, s), µ1 ∨ µ2)). Then there exists an admissi-

ble model (M ′′, s′′) ∈ Res(Updatet((M, s), µ1 ∨ µ2)) with a bisimulation relation

where H ′′ < H ′. Note that (M ′′, s′′) |= µ1 ∨ µ2. If (M ′′, s′′) |= µ1, then it im-

plies (M ′, s′) 6∈ Res(Updatet((M, s), µ1)). If (M
′′, s′′) |= µ2 then it implies (M ′, s′) 6∈

Res(Updatet((M, s), µ2)). In both cases, we have (M ′′, s′′) 6∈ Res(Updatet((M, s), µ1))

∩ Res(Updatet((M, s), µ2)). This proves the result.

Now we prove that ⋄t satisfies (U8). From (1), it is clear that: Modt((T1 ∨

T2) ⋄t µ) =
⋃

(M,s)∈Mod
t(T1∨T2)

Res(Updatet((M, s), µ)) =
⋃

(M,s)∈Mod
t(T1)

Res(Updatet((M, s), µ)) ∪
⋃

(M,s)∈Mod
t(T2)

Res(Updatet((M, s), µ)) = Modt(T1 ⋄tµ)∪

Modt(T2 ⋄t µ). This means ⋄t satisfies postulate (U8).
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2.3.2 Persistence Properties

An essential semantic property we should study in relation to model update is so

called persistence. That is, for a given tree-like model (M, s) and two ACTL formulas

φ and ψ, where (M, s) 6|= φ and (M, s) |= ψ, after updating (M, s) with φ we

obtain a new tree-like local model (M ′, s′) such that (M ′, s′) |= φ. Then we would

like to know whether ψ still holds in the new model: (M ′, s′) |= ψ. In general

updating a model with one formula may affect the satisfaction of other formulas

in the resulting model. Study on the persistence property in a local model update

is important, because this will provide essential information of how a specific local

model update influences other properties that the system originally obeys. The

following general result indicates that our update does not affect those irrelevant

formulas’ satisfactions in the resulting local model.

To this aim, we first introduce a useful notion. For a given ACTL formula φ, we

use V ar(φ) to denote the set of all propositional variables (atoms) occurring in φ.

The following result is obvious.

Proposition 2.2. Let (M, s) be a tree-like model, φ and ψ two ACTL formulas such

that V ar(φ) ∩ V ar(ψ) = ∅, and (M ′, s′) a tree-like model resulting from the update

of (M, s) with φ. Then (M ′, s′) |= ψ iff (M, s) |= φ.

However, the situation becomes complicated when φ and ψ share some common

propositional variables. In general, the persistence property does not hold any more

in a local model update when two formulas share common propositional variables.

What makes this problem meaningful and challenging is to identify some useful cases

for which the local model update preserves the persistence property for a class of

ACTL formulas.

Definition 2.8 (Strict extension). A tree-like model (M, s) is called a strict ex-

tension of (M ′, s′) if, for each path in (M ′, s′) π′ = [s0, s1, . . .](s0 = s′), there is

at most one path in (M, s) π = [s0, . . . , sk, sk+1, . . .](s0 = s′), such that for all

si ≤ sk, si ∈ π′, and for all sk < sj , sj 6∈ π′.

Theorem 2.2 indicates that during a tree-like model update, our approach will

not affect those irrelevant formulas’ satisfactions in the resulting model.
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Intuitively, if (M, s) is a strict extension of (M ′, s′), then (M, s) does not contain

any more branches than (M ′, s′) does. Strict extensions represent some interesting

cases in tree-like local model updates. Quite often, an update result may be obtained

by only cutting off or extending some paths of the original local model. The following

theorem reveals an important persistence property associated to strict extensions.

Theorem 2.3. Let (M, s) be a tree-like model and φ an ACTL formula. Then the

following results hold:

1. If (M ′, s′) is a result of updating (M, s) with φ, and it is a strict extension of

(M, s), then for any ACTL formula ψ not containing operator AG, (M, s) |= ψ

implies (M ′, s′) |= ψ;

2. If (M ′, s′) is a result of updating (M, s) with φ, and (M, s) is a strict exten-

sion of (M ′, s′), then for any ACTL formula ψ only containing operator AG,

(M, s) |= ψ implies (M ′, s′) |= ψ;

Proof. We prove Result 1 by induction on the structure of formula ψ. More specif-

ically, it is sufficient to prove the cases of propositional formula ψ, AXψ, AFψ, and

A[φ U ψ]. Let M = (S,R,L) and M ′ = (S′, R′, L′). From Definition 2.8, we know

that (M ′, s′) must contain the same branches as (M, s) contains, and s = s′. We

first consider that φ is just a propositional formula. Then we have (M, s) |= ψ iff

L(s) |= φ. This means (M ′, s′) = (M ′, s) |= ψ.

Now suppose φ is of the form AXψ. Since (M, s) |= AXψ we know that for

each s∗ ∈ S such that (s, s∗) ∈ R, (M, s∗) |= ψ. Again, because (M ′, s′) is a strict

extension of (M, s), all such (s, s∗) are also in R′, so (M ′, s∗) |= ψ. Furthermore,

there is no other new state s† such that (s, s†) 6∈ R. So (M ′, s′) |= AXψ as well.

Suppose φ is of the form AFψ. From (M, s) |= AFψ, we know that for each path

π = [s, . . .] in M , there exists some sk ∈ π such that (M, sk) |= ψ. This path must

be in M ′, so we have (M ′, sk) |= ψ. On the other hand, (M ′, s′) is a strict extension

of (M, s), in M ′ there does not exist a path of the form π′ = [s′, . . . , sk, sk+1, . . .]

where states sk ∈ S, and sk+1, . . . ∈ S′ and another path π′′ = [s′, . . . , sk, s
′
k+1, . . .]
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is in M and also in M ′(sk+1 6= s′k+1). That means, it is not possible that state sk

leads to two different paths in M ′. This implies (M ′, s) |= AFψ.

Suppose φ is of the form A[ψ1 U ψ2]. From (M, s) |= A[ψ1 U ψ2], we know that

for each path π = [s, . . .] there exists some sk ∈ π such that (M, sk) |= ψ2 and for all

j < k, (M, sj) |= ψ1. This path must also be in M ′, so we have (M ′, sk) |= ψ2 and

∀j < k, (M ′, sj) |= ψ1. On the other hand, (M ′, s′) is a strict extension of (M, s),

in M ′ there does not exist a path of the form of π′ = [s′, . . . , sk, sk+1] where states

sk ∈ S and sk+1, . . . ∈ S′ and another path π′′ = [s′, . . . , sk, s
′
k+1, . . .] is in M and

also in M ′(sk+1 = s′k+1). The state sk which terminates the until clause and all

j < k holding will not lead to a different path in M ′. This implies (M ′, s) |= A[ψ1

U ψ2].

Result 2 can be proved similarly. It is sufficient to prove the case for the formulas

only containing AG. LetM = (S,R,L) andM ′ = (S′, R′, L′) where (M, s) is a strict

extension of (M ′, s′). From Definition 2.8 we know (M, s) must contain the same

branches as (M ′, s′) contains and s = s′. For formulas containing AG, if some path

in (M, s)π = [s, . . . , sk, sk+1, . . .] where (M, s) |= φ there will be a corresponding

π′ = [s, . . . , sk] in (M ′, s′), where (M ′, s′) |= φ, and π extends π′, by definition of

AG if all states in (M ′, s′) satisfy ψ, (M ′, s′) |= AGψ.

Example 2.5. The tree-like local model (M, s) depicted in the following figure rep-

resents a counterexample of ACTL formula A[a U b]∨AX(a). From Definition 2.7,

it can be checked that model (M ′, s) on the right side in Figure 2.7 is one possible

result of updating (M, s) with formula A[a U (¬a ∧ b)] ∨AX(a). Clearly, (M ′, s) is

a strict extension of (M, s) in this case. Consider another formula AF (AX(a∨ c)).

It is observed that (M, s) |= AF (AX(a∨ c)). According to Result 1 in Theorem 2.3,

we should have (M ′, s) |= AF (AX(a ∨ c)) as well.

�
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Figure 2.7: Updating (M, s) with A[a U (¬a ∧ b)]∨ AX(a) preserves the per-
sistence of AF(AX(a ∨ c)).

2.4 Computational Properties

In this section we study the computational properties in relation to tree-like local

model update. We will first provide the main complexity result of local model

update, and then study the computational issues of some typical tree-like local

model updates.

2.4.1 Complexity Results

We first provide the main complexity result of tree-like local model update as follows.

Theorem 2.4. Let (M, s) and (M ′, s′) be two tree-like models, H a weak bisim-

ulation between (M, s) and (M ′, s′), and φ an ACTL formula. Deciding whether

(M ′, s′) is a result of updating (M, s) with φ under H as defined in Definition 2.7 is

co-NP-complete.

Proof: Membership. To show the membership, we have first proved the following

result: Given models (M, s), (M ′, s′) and a weak bisimulation H between (M, s)

and (M ′, s′). There exists a model (M ′′, s′′) and a weak bisimulation H ′′ between

(M, s) and (M ′′, s′′) such that H ′′ < H, if there exists a model (M †, s†), whose size is

in the polynomial size of (M, s), and (M ′, s′), and a H† between (M, s) and (M †, s†)

such that H† < H.
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Suppose M ′ = (S′, R′, L′) and s′ ∈ S′. It is well known that checking whether

(M ′, s′) |= φ can be done in O(|φ|·(|S′|+|R′|)). Now we need to check the minimality

of (M ′, s′) according to Definition 2.5 and 2.6. For doing that, we consider the

complement of the problem: checking whether (M ′, s′) is not an update result. First,

we guess another tree-like model (M ′′, s′′) and a weak bisimulation H ′′ between

(M, s) and (M ′, s′). From the above result, we know that it is sufficient to just

guess a (M ′′, s′′) which is in polynomial size of (M, s) and (M ′, s′). According to

Definition 2.5, on the other hand, guessing a H ′′ between (M, s) and (M ′′, s′′) can

also be done in polynomial time. Then we check whether (M ′′, s′′) |= φ. Obviously,

checking whether (M ′′, s′′) |= φ is in polynomial time. From 2.6, it is easy to see

that deciding whether H ′′ < H is also in polynomial time. So deciding whether

(M ′, s′) is not a result is in NP. That is, the original problem is in co-NP.

(Hardness). It is well known that the validity problem for a propositional formula

is co-NP-complete. Given a propositional formula φ, we construct a transformation

from the problem of deciding the validity of φ to a tree-like model update in polyno-

mial time. Let X be the set of all variables occurring in φ, and a, b two new variables

which do not occur in X. We denote ¬X =
∧
xi∈X

¬xi. Then, we specify a tree-like

Kripke model based on the variable set

X ∪ {a, b} :M = ({s0, s1}, {(s0, s1), (s1, s1)}, L), where L(s0) = ∅ and L(s1) = X.

Now we define a new formula µ = AX(((φ→ a)∧ (¬X ∧ b))∨ (¬φ∧ a)). Clearly

formula ((φ→ a)∧(¬X∧b))∨(¬φ∧a) is satisfiable and s1 6|= ((φ→ a)∧(¬X∧b))∨

(¬φ∧a). So (M, s0) 6|= µ. Now we consider the update of (M, s0) with µ. We define a

new tree-like model M ′ = ({s′0, s
′
1}, {(s

′
0, s

′
1), (s

′
1, s

′
1)}, L

′), where L′(s′0) = L(s0) and

L′(s′1) = {a, b}. The weak bisimulation H between (M, s0) and (M ′, s′0) is defined

as H(s0, s
′
0) and H(s1, s

′
1). Then it is not difficult to verify that (M ′, s′0) is a result

of updating (M, s0) with µ iff φ is valid. This completes our proof.

Theorem 2.4 provides an essential computational insight for tree-like local model

update. It implies that, unless P=NP, it is unlikely to develop a polynomial time

algorithm to compute an update result. Indeed, our implementation algorithm for

local model update runs in exponential time generally. Furthermore, without giving
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the specific bisimulation in the input, the model checking complexity as stated in

Theorem 2.4 will be in ΠP2 .

2.4.2 Computing Typical Tree-Like Local Model Up-

dates

Although computing local model update is generally expensive, we have observed

that many updates with typically ACTL formulas can actually be achieved in a

more effective way. In the following, we provide complexity results for these typical

updates.

Theorem 2.5. Let (M, s) be a tree-like Kripke model, where M = (S,R,L) and

s ∈ S, φ and ψ two propositional formulas. Then the following results hold.

1. If (M, s) 6|= AXφ, then a resulting tree-like model (M ′, s′) can be computed in

time O(|R| · 2|var(φ)|);

2. If (M, s) 6|= AGφ, then a resulting tree-like model (M ′, s′) can be computed in

time O(|S| · 2|var(φ)|);

3. If (M, s) 6|= AFφ, then a resulting tree-like model (M ′, s′) can be computed in

time O(|R| · |S| · 2|var(φ)|);

4. If (M, s) 6|= A[φUψ], then a resulting tree-like model (M ′, s′) can be computed

in time O(|R| · |S| · 2|var(φ)|);

5. If (M, s) 6|= AG(φ → AF (ψ)), then a resulting tree-like model (M ′, s′) can be

computed in time O(|R| · |S| · 2|var(φ)|).

Proof. 1. If (M, s) is a counterexample of AX(φ) then there exists some s1 ∈ S such

(s, s1) ∈ R, L(s1) 6|= φ, or there is no s1 ∈ S such (s, s1) ∈ R and thus (M, s) 6|= φ.

Case 1. There exists (s, s1) ∈ R. There are transitions from the state s and there

are two possibilities for update. Firstly, there is no transition from the state which
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satisfies the property, i.e. all s1 such that (s, s1) ∈ R,L(s1) 6|= φ. Semantics of AX

require that at least one state exists transitioning from the origin. We can perform

one of two updates to each state s1, on the condition that one of the states maintains

(s, s1) ∈ R and L(s1) |= φ. In this case, we can perform one of two updates to each

state s1, on the condition that one of the states maintains (s, s1) ∈ R and L(s1) |= φ.

Possibilities include removing a transition, effecting R′ = R − (s, s1) or modifying

the labelling function of s1 to s′1, such that under labelling function L′, L′(s′1) |= φ

and Diff(L(s), L′
1(s

′
1)) is minimal.

We remove from possibility the update which removes all transitions from the

selected state as a method for satisfying the formula. An update (M ′, s′) can be

derived from (M, s) by updating some s1, through the labelling and all other outward

transitions being removed. All possible updates can be derived using this technique,

by applying combinations of techniques while assuring one transition which satisfies

the condition AXφ exists.

Figure 2.8: Possibilities for update for (M, s) by property AX(y).

Case 2. If there exists s1 ∈ S, where (s, s1) ∈ R, and s1 |= φ but s 6|= AXφ, apply

the prior case, but a state which satisfies the sub-formula is no longer required, this

allows the update case where all unsatisfied branches are removed.

Case 3. There is no s1 ∈ S, such (s, s1) ∈ R. We extend s by s∗, such S =

S ∪ {s∗}, R = R ∪ {(s, s∗)} and L(s∗) = L(s), but L(s∗) |= φ and Diff(L(s), L′(s∗))

is minimal.
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Now consider complexity for AXφ. For each branch from the original state, we

need to update exactly one state, costing time O(2|var(φ)|)3. Since we need to span

over each relation in R from the origin, time complexity becomes O(|R| · 2|var(φ)|).

2. In a counterexample (M, s) of AGφ, there must exist one or more paths in

(M, s)π = [s0, s1, . . .](s0 = s) such that for some s ∈ π, L(s1) 6|= φ. In this case every

state along every path is required to satisfy the formula. To satisfy this formula, two

updates can be applied which can affect satisfaction. One method is modification

of the label function of s1 to s′1 such that for L′, L′(s′1) |= φ and Diff(L(s1), L
′(s′1))

is minimal. Another tree-like structure preserving update is branch pruning, as

described in persistence properties, where R′ = R− (si−1, si), where si 6|= φ.

With these two methods an update (M ′, s′) can be derived from (M, s) by up-

dating some s1, though through combinations of the previous techniques such that

there is no s1 6|= φ.

Figure 2.9: Possibilities for update for (M, s) by property AG(a).

Consider the complexity for this procedure. For each state in paths from the

origin which do not satisfy the given propositional subformula we need to update,

which costs time O(2|var(φ)|). As this needs to be performed over each unsatisfied

state, time complexity becomes O(|S| · 2|var(φ)|).

3Such complexity O(2|var(φ)|) for individual state minimal update is inevitably inherited
from the classical model based update approach [99].
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3. Since (M, s) is a counterexample of AFφ then there must be a path in (M, s)π =

[s0, s1, . . .](s0 = s) such that for each s ∈ π, L(si) 6|= φ. There are two cases.

Case 1. π is a finite path. Recall that under weak bisimulation minimal change

principle, whenever possible, we try to update the tree-like model at as lowest level

as possible. In this case, we simply update the last state sk in π to s′k, such that

under the new model’s labelling function L′, L′(s′k) |= φ and Diff(L(sk), L
′(s′k)) is

minimal. If there is no other path in (M, s) which violates Fφ, then it is easy to

see the new model (M ′, s′) obtained in this way is a resultant model with respect to

Definition 2.7.

Case 2. π is an infinite path, that is π ends up with a loop:

π = [s0, s1, . . . , sk, sk+1, . . . , sk+h, sk], as shown in Figure 2.10.

Figure 2.10: A case of update with AFφ.

In this case, the lowest level of path π is the state sk+h: the last state in the loop

back to the loop entry state sk (i.e. the arrow pointed state in 2.10). We update

sk+h to satisfy formula φ minimally. Once we complete the update on all paths that

violate Fφ, the resulting model will satisfy AFφ, and is minimal from the original

model (M, s).

Now let us consider the complexity of this update procedure. Clearly, for each

such path, we need to update exactly one state, which costs time O(2|var(φ)|) . Given

the tree-like counterexample (M, s) of formula AFφ, generating a path of (M, s) and

the update on the last state will cost O(|R| + 2|var(φ)|) at most. Since there are at

most |S| states, we need to consider for the update the total cost will be no more

than O(|R| · |S| · 2|var(φ)|).
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4. If (M, s) is a counterexample of A[φ U ψ] then there exists some path π =

[s0, s1, . . .](s0 = s) such that for some s ∈ π, π |= φ and π 6|= ψ or s 6|= φ ∨ ψ. Here

we have two possible cases for update.

Case 1. (M, s)π |= φ and π 6|= ψ. In this scenario the reader is referred to the

update case for AFψ, as AFψ is equivalent to A[⊤ U ψ].

Case 2. (M, s)π 6|= φ ∨ ψ. In this case we need to update the state where neither

φ or ψ are satisfied. There exists two options, either satisfy ψ at the states and

terminate, or satisfy φ at s, then at some future state update by A[φ U ψ].

For any state s where (s, s) ∈ R a path π exists where [s, s, . . .] and s is traversed

infinitely. This path needs to satisfy the subformula ψ and thus satisfy any path

which exists from this state. Another condition on A[φ U ψ] is for leaf states. Any

state sj where sj ∈ π, π is a finite path, π = [s0, . . . , sj ] and there is no sk such that

(sj , sk) ∈ R must be updated to satisfy ψ.

Figure 2.11: Possibilities for update for (M, s) by property A[a U b].

For each path we need to update at least once for each violation state that

exists, costing O(2|var(φ)|). Like AF, AU traverses a path from (M,s), updating

states will cost O(|R| · 2|var(φ)|). As we need to consider |S| states for update we get

O(|S| · |R| · 2|var(φ)|) for the resulting complexity.
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5. If (M, s) is a counterexample of AG(φ → AF(ψ)), then there exists some path

π = [s0, s1, . . . , sj ](s0 = s) such that for some s ∈ π, s |= φ and from s there is no sj

where sj ∈ π, sj 6|= ψ.

In this case we apply the semantics given earlier for AG and AF. Two options

are available to satisfy the formula. Satisfying ¬φ at s, or satisfying AF(ψ) at a state

deeper in the model. As shown in Case 1. of 3. the optimal choice for modification

is at states deeper in the model.

As with AF, for each such path we need to update exactly one state, which

costs time O(2|var(φ)|) . Given the tree-like counterexample (M, s) of formula AFφ,

generating a path of (M, s) and the update on the last state will cost O(|R|+2|var(φ)|)

at most. Since there are at most |S| states we need to consider for the update the

total cost will be no more than O(|R| · |S| · 2|var(φ)|).

2.5 Theory of Constraint Automata

In the previous sections we have shown that the weak bisimulation based minimal

change principle for tree-like model update is defined purely based on Kripke struc-

tures, no system constraints or other domain dependent information are considered

in generating an update result. However, when we perform a model update, we

may require this update not violate other specified system functions (e.g. breaking a

deadlock should not violate a liveness property in a concurrent program). Further,

even if an updated model satisfies our minimal change criterion (i.e. Definition 2.7),

it may not represent a valid result under the specific domain context. For instance,

as showed in Example 2.4, (M1, s1) is a minimal updated model to satisfy formula

AG¬x ∨ AF¬y. In practice, however, M1 might not be acceptable if changing the

variable x’s value is not allowed in all states in model (M, s).

This motivates us to take relevant system constraints into account when we

perform a model update. Besides logic based system domain constraints, which can

usually be specified using ACTL (or CTL) formulas, there are some more complex

constraints that are usually not expressible or difficult to be represented in the form
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of ACTL (or CTL) formulas. For instance, constraints related to system actions

cannot be directly represented by ACTL (CTL) formulas. In the following, we study

two such typical constraints we use to guide update: variable constraints and action

constraints related to expressing the underlying system behaviours. Following this

we demonstrate the technique on a case of the dining philosophers problem using

action constraints.

Given a set of propositional variables V and a set of system actions A, we

define a Variable Constraint Automaton constructed from V and A to be a finite

deterministic automaton VC(V,A) = (S,Σ, δ, q0, F, v), where S ⊆ 2V ∪ {v} is the

set of states, Σ = A is the input action symbols, δ : S × Σ → S is the total state

transition function, q0 ∈ S is the initial state, F ⊆ S is the set of final states, and

v ∈ S is the unique violation state.

Figure 2.12: A variable constraint automaton.

A variable constraint automaton represents certain relations bound between a

set of variables and a set of system actions. Consider two states si, sj ∈ S, where

si and sj are not the violation state v, then a transition from si to sj via action

a: δ(si, a) = sj , indicates that by executing action a, variables’ values represented

by state si have to be changed to the corresponding variables’ values represented

by state sj . Consider the variable constraint automaton depicted in Figure 2.12.

Action i := t + 1 ties two variables i and t, so that i’s value must depend on t’s

value when this action is executed4. On the other hand, action i > 0? will not affect

i and t’s values, but execution of action i < 0? will lead to the violation state v (∗

represents any action symbols from Σ).

4For simplicity, we deliberately ignore the difference between a program and logic variable.
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Similarly given a set of system actions A, we define an Action Constraint Au-

tomaton constructed from A to be a finite deterministic automaton AC(A) =

(S,Σ, δ, q0, F, v), where S ⊆ 2A ∪ {v} is the set of states, Σ = {preceded, next,

exclusive} is the set of input action constraint symbols, δ : S × Σ → S is the total

state transition function, q0 is the initial state, F is the set of final states, and v is

the unique violation state.

Figure 2.13: An action constraint automaton.

In an action constraint automaton, each state except the violation state is iden-

tified by a set of system actions. Then a transition between two states represents

certain execution constraint between two specific sets of actions. For instance, if ai

and aj are two system actions and states si and sj are identified by actions {ai} and

{aj} respectively, then δ(si, preceded) = sj means that action ai should be executed

earlier than action aj , δ(si,next) = sj indicates that an execution of action ai must

enforce an immediate execution of action aj , and δ(si, exclusive) = sj states that an

execution of action ai must exclude a following execution of action aj .

We give an example in Figure 2.13. In this case we have the two accepting states

s1 and s2, the violation state v, and actions left?fork and right?fork at s1 and

s2, respectively. An action constraint is created between s1 and s2 restricting the

executions such that the action of state s1 must come before the action of s2, any

other execution order causing the automata to transition to the violation state v.
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(a) State transition is consistent with variable
constraints.

(b) State transition sequence complies to
action constraint preceded.

Generally from a given system, we may generate more than one variable and

action constraint automata. Now we may take the constraint automata into ac-

count when we perform model update. As discussed in the beginning of this section,

in order to produce a more meaningful update result, our minimal change princi-

ple should be enhanced by integrating domain constraints, and system behaviour

related variable and action constraints. Towards this aim, we first associate a set

of system actions to a given Kripke structure. Recall that in the extent of model

checking and model update, a Kripke structure actually represents the underlying

system’s behaviours where each state transition in the Kripke structure is caused by

an execution of some system action. Therefore, for a given system, we can associate

a set of system action A to the corresponding Kripke structure M = (S, R, L) such

that each state transition (s, s′) ∈ R is labelled by some action a ∈ A.

Definition 2.9. LetM = (S, R, L) be a Kripke structure, A a set of system actions

associated to M , V a set of propositional variables, VC(V,A) = (SVC ,ΣVC , δVC , qVC0 ,

FVC, vVC) a variable constraint automaton, and AC(A) = (SAC, ΣAC, δAC, qAC
0 ,

FAC, vAC) an action constraint automaton. We say that M complies to VC and

AC, if the following conditions hold:
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(a) State transition sequence in (M, s)
complies to action constraint next.

(b) Similarly, state transition sequence in
(M, s) complies to action constraint exclusive.

1. For each state transition δVC(s1, a) = s2 in VC(V,A) where s1, s2 are not the

violation state, if there is a state s ∈ S such that s1 ⊆ L(s) and (s, s′) ∈ R is

labelled with a, then s2 ⊆ L(s′) (i.e. variable bindings through action a);

2. For each δAC(s1, preceded) = s2 in AC(A), where s1, s2 are not the violation

state, for each a ∈ s1 and a′ ∈ s2, there exists a path π = [s0, · · · , si, si+1,

· · · , sj, sj+1, · · · ] in M such that (si, si+1) is labelled with a and (sj , sj+1) is

labelled with a′ (i.e. a occurs earlier than a′);

3. For each δAC(s1, next) = s2 in AC(A), for each a ∈ s1 and a′ ∈ s2, there exists

a path π = [s0, · · · , si, si+1, si+2, · · · ] in M such that (si, si+1) is labelled with

a and (si+1, si+2) is labelled with a′ (i.e. a′ occurs next to a);

4. For each δAC(s1, exclusive) = s2 in AC(A), for each a ∈ s1 and a′ ∈ s2, there

does not exist a path π = [s0, · · · , si, si+1, · · · , sj , sj+1, · · · ] in M such that

(si, si+1) is labelled with a and (sj , sj+1) is labelled with a′ (i.e. a’s execution

excludes a′’s execution).
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Let us take a closer look at Definition 2.9. Condition 1 defines the transition

function in a variable constraint automaton in the following way: if there is a state

transition (s, s′) ∈ R in the Kripke structure, where some variables in s and s′ are

bound through action a, then in the variable constraint automaton, such variable

bindings are represented through δVC(s1, a) = s2, where states s1 and s2 contain

those corresponding variables respectively. Conditions 2, 3 and 4, on the other hand,

define the transition function δVC with respect to three specific constraints between

actions in an action constraint automaton. In an action constraint automaton,

a state is a set of system actions, and δAC(s1, preceded) = s2 represents such a

constraint that all actions in s1 must be performed before actions occurring in s2.

Similar explanations are obtained for conditions 3 and 4 in the definition.

Given a set of domain constraints C (ACTL formulas) and a class of constraint

automata ℑ, we say that a tree-like model (M, s) complies to C and ℑ if (M, s) |= C

and (M, s) complies to each constraint automaton in ℑ. Now we can extend our

previous tree-like model update with complying to domain constraints and constraint

automata.

Definition 2.10 (Update complying to constraints). Let (M, s) be a tree-like model,

C a set of ACTL formulas specifying the domain constraints, ℑ a class of system

constraint automata, and φ a satisfiable ACTL formula such that (M, s) 6|= φ. A

tree-like model (M1, s1) is called a result of updating (M, s) with φ complying to

{C,ℑ}, iff

1. (M1, s1) |= φ and complies to C and ℑ;

2. there is a weak bisimulation H1 between (M, s) and (M1, s1) such that there

does not exist another tree-like model (M2, s2) satisfying that (M2, s2) |= φ,

(M2, s2) complies to C and ℑ, and a weak bisimulation H2 between (M, s) and

(M2, s2) such that H2 < H1.

We should indicate that combining domain constraints and constraint automata

into our tree-like model update approach does not significantly increase the ap-

proaches complexity, remaining co-NP-complete.
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2.6 Summary

In this chapter we have thoroughly investigated the preliminary concepts for effect-

ing efficient satisfaction of some formal ACTL property in a local region of a Kripke

structure. This included the conditions in which we can confidently say one new

model is closer to the original model than some alternative, while still satisfying a

property using weak bisimulation semantics as a way to determine ordering between

different modification approaches. Further, we expressed the link between our ap-

proach and a previous approach for belief update by Katsuno and Mendelson, and

showed how we can determine if applying some modification using one property will

interfere with the satisfaction of some secondary desired property. We also anal-

ysed computational properties, looking at expected time complexities for generating

candidate local model updates using common properties. Finally, we extended the

theoretical approach with constraint automata as a means of improving the quality

of the update process without significantly increasing complexity.

In the following chapter we bridge the gap between theory and implementation

by generating algorithms enacting property satisfaction on concrete system model

counterexamples, guided by the characterisations in this chapter. These are the pre-

liminary steps towards meeting the goal of developing software which automatically

performs localised update.



Chapter 3

Algorithms for ACTL Local

Model Update

3.1 Basic Idea for Algorithm Design

In the prior chapter we investigated theoretical foundations of local model updates.

The theory has been used as a framework to generate algorithms that can be used

as modules for the system implementation. The proposed algorithms in this chapter

enact the principles outlined in the formal framework, including weak bisimulation

based minimal change and the primitive update archetypes. The update algorithm

works as a search procedure, taking the local model to be updated, the initial state

and an ACTL formula, and processes the model based on the ACTL formula token

semantics. Finally, the algorithm returns a set of possible modifications which sat-

isfies the model when applied. The algorithm is also built with design patterns used

from previous implementations of SAT solvers and model checkers [66, 101].

Although we have analysed the semantic characterisations of local model up-

date in the prior chapter, many challenges exist in translating characterisations to

algorithms. One challenge in deriving satisfying modifications to a model is that to

satisfy a temporal property, updates need to be enacted over model path regions

which are not the state it is satisfying. An example of this is satisfying AFa∧ AF¬a

at s. It is necessary to satisfy a and ¬a at all connected branching paths from s,

but not at the same states. This is covered with persistence in Section 2.3, it seems

logical to satisfy these two propositions sequentially but it is difficult to tell if this

technique would scale with more propositional atoms.
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Substituting a state with another which satisfies another propositional atom can

lead to inconsistencies in the satisfaction of some property. Another possibility ex-

ists with formulae where two states require satisfaction by some subformula and can

be satisfied by one minimal modification (e.g. AG((c → AFa) ∧ (d → AFa))). To

handle these cases, we look to the characterisations and minimal change based on

bisimulation semantics for heuristics, and to derive coherent updates. It can also

be seen that performing comparisons between entire local models can be computa-

tionally expensive. A shorthand system for representing changes to a local model is

given which represents differences between models in an atomic manner using update

tuples. Update tuples are maintained in sets of updates, such that multiple modifi-

cations can be performed and comparisons can be made to determine minimality of

change. This is discussed further in the chapter.

Other points exist which should be addressed about the implementation; for

efficiency and completeness purposes we transform the repair update problem to

a search procedure over the size of the local model region using a combination of

iterative and recursive path traversal methods in conjunction with the semantics

of ACTL. By doing this we can efficiently search over the model using the derived

characterisations and build a set of possible atomic updates that we can apply to

the local region of the model to effect satisfaction. Also note that the update search

procedure does not actually modify the underlying Kripke model; control passes

along the model state paths based on the formula semantics and functions return

enumerated sets of atomic update tuples which satisfy the model by the formula.

Included with the update search algorithm is the function which applies the update

once determined. When the minimal possible updates have been determined it may

be returned. Next, implementing the most minimal update requires accessing the

referenced state(s) or relation(s) and applying the atomic update. All algorithms in

the following section are designed in pseudo-code for readability and to give focus

to important design elements.

To demonstrate, we give an example illustrating the derivation of an update over

a model not satisfying a compound temporal property AXAFa.
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Example 3.1. Consider the model represented in the transition graph in Figure 3.1

where M = (S, R, L), S = {s1, s2, s3, s4, s5, s6, s7}, R = {(s1, s5), (s5, s6),

(s1, s2), (s2, s5), (s5, s3), (s2, s3), (s3, s4), (s4, s7), (s7, s3)} and L(s1) = {a},

L(s5) = {a, b}, L(s2) = L(s3) = L(s4) = L(s6) = L(s7) = {b}. Suppose it

is required that (M, s1) satisfy the property AXAFa. Passing this into a model

checker we find (M, s1) 6|= AXAFa witnessed by the local model C = (S, R, L),

where S = {s1, s2, s3, s4, s7}, R = {(s1, s2), (s2, s3), (s3, s4), (s4, s7),

(s7, s3)} and L(s1) = {a}, L(s2) = L(s3) = L(s4) = L(s7) = {b}, L(s5) = {a, b}.

With this local model we start from the initial state s1 and apply the semantics

of AXφ to route update. AX semantics requires that all states immediately related

to the current state satisfy the sub-formula, meaning update needs to occur from s2

using AFa. From AF semantics we know that from the current state all paths have

to at some point satisfy the subformula, in this case a. Following the local model path,

we find that the deepest depth ends in a cycle, we can modify some state s3, s4 or

s7 to satisfy a and thus the formula as a whole. Being a cycle, the characterisations

imply that the most appropriate update would be to update the model by substituting

state s3 with another state s′3, where s′3 satisfies a. This is represented using an

update token set U = {(s3, +, a)}, indicating update at state s3 by adding the label

a to the state. We go further into update tuples in Subsection 3.2.2 of this chapter.

Figure 3.1: Example where (M, s) 6|= AXAFa.
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From this example, we can see that enacting update proposes several challenges.

This includes separation of duty for each ACTL token based on their specific seman-

tics, and methods for traversing the Kripke model paths. Beyond this example, we

require means of determining which update is more minimal and how to determine

persistence between two updates, which we will analyse later in this chapter. In the

following section we will analyse and construct the algorithm used to enact update.

3.2 Algorithms

3.2.1 Main Update Algorithm

Updatec in Algorithm 3.1 is the main update algorithm, where c is used to indicate

it as the core function1. To begin an update session, we pass as argument a local

model, an ACTL formula, and an initial state to Updatec. Updatec is used to route

the applied semantics to the model based on the root formula token in the ACTL

formula2.

In each of the temporal operations the model is traversed based on the require-

ment to determine satisfaction of the formula at different states. As this is a recursive

procedure, once the function is called to handle the update case returns, the update

set(s) will be aggregated and control will be returned to the calling function. This

function is called by the other sub-functions as a means of recursively determining

satisfaction of the sub-formulas it is passed. In this way calls pass through the sub-

formulas of the property depth-first through the tree-like structure, where the leaves

of the formula tree are the propositional atoms. It follows that the nesting depth

of the formula will determine the recursion stack call size in implementation. When

propositional atoms are encountered in the formula, Updatep is called and methods

for substituting a state with another state which satisfies the required propositional

atom are ascertained and returned in the form of an update tuple u.

1In this chapter update functions are subscripted with the formula token to maintain
consistency.

2See Definition 2.1 for ACTL syntax.
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Algorithm 3.1: Updatec(M, s, φ).

Input: M = (S, R, L), where s ∈ S and (M, s) 6|= φ;

Output: Update set U , where u ∈ U and u = (s|r, +|−, p), s|r is
the state or relation modified, p the related atomic
proposition, and +|− the update modifier.

01 : Updatec(M, s, φ)
02 : {
03 : case

04 : φ ≡ p or φ ≡ ¬p: return Updatep(M, s, φ);
05 : φ ≡ φ1 ∨ φ2: return Update∨(M, s, φ);
06 : φ ≡ φ1 ∧ φ2: return Update∧(M, s, φ);
07 : φ ≡ AG φ1: return UpdateAG(M, s, φ);
08 : φ ≡ AF φ1: return UpdateAF (M, s, φ);
09 : φ ≡ AX φ1: return UpdateAX(M, s, φ);
10 : φ ≡ AU φ1: return UpdateAU(M, s, φ);
11 : }

This recursive design pattern chosen is modular, efficient, facilitates integration

into future update tools, is appropriate for ACTL property structure and also legible

to the point of facilitating understanding for future researchers. To give a deeper

insight into the link between formula parsing and applying update semantics to the

Kripke model based on which formula tokens are being parsed, we use Example 3.2

to explain program function flow routing. For more information about this form of

program flow see [40, 66] for similar designs for both checking and update.

Figure 3.2: The parse tree for ACTL formula (AFAXa)∨ AGb.
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Example 3.2. Consider the ACTL formula φ ≡ (AFAXa) ∨ AGb represented by

the parse tree in Figure 3.1. Here the root of the formula is ∨ and its two arguments

are AFAXa and AGb. In the algorithm Updatec identifies the root of the formula

and passes control to the disjunctive semantics function Update∨
3. Update∨ requires

the return values of its two arguments to apply semantics and return the best up-

date, for each argument we call Updatec. Updatec is called firstly with M , s and

AFAXa. Updatec then identifies AF as the current formula and routes execution to

UpdateAF . UpdateAF then applies its semantics to determine what will satisfy AXa

at some future state in the model. This requires calls to Updatec to determine how

to satisfy the subformula in conjunction with the semantics of AF . Updatec then

routes execution to UpdateAX with the current state s and model M . UpdateAX

applies its semantics on the given state and to determine satisfaction calls Updatec

to route control for the propositional case, Updatep for a.

Once update has been ascertained for the model region from Updatep, the update

tuples representing the minimal update are returned as an update set U back through

the calling functions finally to Update∨. This repeats for its other argument by

passing the formula AGb to Updatec with M and the current state s. With both

possible update sets returned, Update∨ returns the most minimal update based on

heuristics guided by weak bisimulation principles, explained further in this chapter.

3.2.2 Update Tuples

In the previous iteration of model update, the algorithm worked directly on the

model and applied modifications in real time, returning the resulting model satisfying

the ACTL property. In this process, however, applying the update is linear in time

relative to the count of atomic updates. Comparing this to the search procedure

for a set of atomic updates which satisfy the property, the cost is minimal. The

algorithm returns sets of update tuples which indicate what aspects of the model

to modify, to enact property satisfaction in the model by applying the necessary

update. This allows the decoupling of the update search procedure from application

3Specific semantics of each update handler function are explored in following sections of
this chapter.
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of modification and to allow rollback of modifications given the update tuples and

updated model.

Definition 3.1. An update tuple u is a 3-ary tuple (s|r, −|+, p) where

1. s|r is a state s ∈ S or relation r ∈ R;

2. −|+ is the removal/addition modifier, indicating whether the state, relation

or label is being added or removed;

3. p is the propositional atom being added or removed at a given state, this value is

left empty (Null) if the modification is adding or removing a state or relation.

Update tuples are a useful notation which allows us to express a modification

to a Kripke structure (e.g. (s,+, Null) indicates an added state s). We can use the

notation u[0] to represent the first argument and u[1], u[2] to represent the second

and third, respectively.

It is also important to note that the first argument of an update tuple will always

be some state or relation that exists within the local model in question. This means

an update tuple can be determined to be pertaining to a state or a relation by

performing a check to see if it is an element of S or R, respectively.

In general cases more than one atomic modification needs to occur to satisfy a

property formula. For this reason functions return sets of updates U , such that each

update is applied to make the necessary change to satisfy the property. Once the

main function returns an update set each tuple can be used to perform the actual

modification. We can ascertain the cardinality of changes to a model through the

short hand |U|.

This method of representation of update relative to some model has many ad-

vantages. Primarily it can be seen as a method for determining difference between

two models relative to the original by looking at the update set instead of having

to decompose the updated model such that the difference between the original and

some other different update could be seen4. Further to this, it allows a more efficient

4This was listed as one of the limitations to the Model Update approach used by Ding in
her Thesis Model Update for System Modifications.
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representation footprint for large updates, as the difference between models is kept

instead of the entire updated model. Another advantage of this approach derives

from the fact that different updates may be required to be performed at the same

state by the same modification or contain updates which conflict. Using this repre-

sentation of updates, these checks can be done in constant time with the appropriate

data structures. The approach also allows heuristics to be generated which can be

used to approximate bisimulation ordering, giving a computationally faster method

of determining which is a more minimal update.

3.2.3 Propositional Atom Update

The idea behind atomic propositional update shown in Algorithm 3.2 is based on

previous state substitution methods such as operator PU3 in [101] and adheres to

the characterisations given in the previous chapters. The algorithm for the update of

a single state’s label function by a propositional atom is the base case presented for

possible update types. In this approach, updating by higher level nested temporal

tokens will occur first on the model, going through several layers of nested formula

operations and applying the required model routing. This is done before applying

state substitutions by using the function Updatep. In this way updating a state label

is functionally equivalent to substituting the state with another that has the same

labels, but satisfies the propositional atom.

This function handles both negated and positive atom formula types, based on

the notion that ACTL formulas require that negation only be applied to proposi-

tional atoms. A separate update function for handling negation is not required as

one of the initial preconditions for each ACTL formula is that negation be restricted

solely to propositional atoms. Before update however, the ACTL formula is checked

to satisfy this condition, and if found to have negation outside of propositional atoms

equivalences are used to attempt to transform it to ACTL. If no ACTL equivalence

can be found an exception is raised.

The main intuition of the function is to check the sign of the atom (lines 3, 5,

7 and 9 ) and the presence of the corresponding label at the given state’s label set,

then based on this, return the update tuple for substituting the state. The new state

would satisfy the given formula (i.e. u = (s, +, p) for adding a label p at state s,

and removal u = (s, −, p)).
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For a positive propositional atom, if the corresponding label is present in the

label set associated with the state, then the state satisfies the property and a null

update is returned. This signifies that the state satisfies the atom and no update is

required (line 11 ). In this sense, we can say that the update process is idempotent

(i.e. if an attempt is made to update a model by a specification it already satisfies

or was previously updated to satisfy by there is no effect to the underlying model).

Otherwise, if the formula is a positive propositional atom and the corresponding

label is not present in the state’s labels, we simulate an update by unioning the

label set of the state with the new atom. We represent this formally on the state

s by noting that s 6|= p and creating a new state s′, where L(s′) = L(s) ∪ {p}

and s′ |= p. The function returns an update tuple u = (s, +, p) to indicate that

this unioning is necessary for atom satisfaction (line 9 ). This works for a state’s

label space, in that absence of a label in the label set represents the negation of the

atomic proposition in ACTL property semantics.

Example 3.3. In Example 3.1 we defined s3 with the label function L(s3) = {b},

if we apply Updatec(M, s3, a) to have s3 satisfy the property a. Updatec routes

execution to the function Updatep which checks the label function of the state, and

based on the negation status of the formula atom and the presence or absence of the

atom in the label, returns the corresponding update tuple indicating what to add or

remove from the label function. The algorithm will note the absence of the label and

the lack of negation, indicating the property can be satisfied by modifying the label

function to satisfy a such that L(s3) = {a, b}. Updatep indicates this by returning

the update tuple set U = {u = (s3, +, a)}. Similarly, if the label function of s3 was

originally L(s3) = {a, b}, Updatep would return the empty update set (∅).

The secondary case which exists for Updatep is where the property is a negative

propositional atom. With the given state we check to see if the atom is an element

of the label set for the state. If not, we return the empty update to indicate the

absence of the atom at the state and thus that M, s |= ¬p (line 11 ). Otherwise

the atom is present in the label set of s and the set difference is taken to remove

p to satisfy the property (line 8 ). Formally we say s 6|= ¬p and create s′ such that

L(s′) = L(s)−{p} and s′ |= ¬p. The function Updatep returns the update tuple set

U = {(s, −, p)} to indicate that state substitution needs to be performed.
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The updated model M ′ comes about through the modification of states, labels

and transitions onM inherent with performing an update. This has the consequence

of having M ′ |= φ. In the formalism, when replacing a state s with another s′

which satisfies the property we do a set union of the state set with s′ and set

difference against s to derive the new state set S′. This is represented formally as

S′ = (S ∪ {s′})− {s}. To obtain the updated set of relations we perform set union

on all relations in the relations where s′ is in the domain or range and it’s associated

state s is in the domain or range and remove all relations in the domain and range of

the state s, i.e. R′ = R−{(x, s), (s, y)|(x, s) ∈ R, (s, y) ∈ R} ∪ {(x, s′), (s′, y)|(x, s) ∈

R, (s, y) ∈ R}. L′ is derived by applying the set union to the set of label functions

to include s′ and the set difference to remove the function which maps s to its label

set. However, in practice each method returns an update tuple set representing the

update that needs to occur to satisfy the sub-property at the state.

Another two cases for Updatep() involves processing tautology (⊤) and contra-

diction (⊥) formulas by returning the update it would represent. If a tautology is

received, an empty update tuple is returned as the model vacuously satisfies the

symbol(line 4 ). If a contradiction is given, a special value MAX is returned, mean-

ing the worst case tuple size (line 6 ). If any comparison is made in the algorithm

between two update tuple sets, the update tuple set without the contradiction sig-

nal MAX will always be seen as the preferred choice and returned. Similarly, if a

comparison is made with an update tuple satisfying a tautology, the tautology will

be selected.

As mentioned earlier Updatep is the most concrete level of update and is called

whenever it is necessary to substitute a state with a new state which satisfies the

propositional atom in question. As ACTL allows nested temporal operations, func-

tions used for update based on temporal properties call Updatec when a state needs

to be updated by some sub-formula, be it nested formula or atomic. Updatec routes

it to the appropriate function specific to the ACTL token, propositional atoms mod-

ifications get routed to Updatep.
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Algorithm 3.2: Updatep(M, s, φ).

Input: M = (S, R, L), where s ∈ S.

Output: Update tuple u = (s|r, +|−, p), where s|r is the state or
relation modified, p the related atomic proposition, and +|−
the update modifier.

01 : Updatep(M, s, φ)
02 : {
03 : if φ ≡ ⊤:
04 : return ∅;
05 : else if φ ≡ ⊥:
06 : return {MAX};
07 : else if φ ≡ ¬p and p ∈ L(s):
08 : return {u = (s, −, p)};
09 : else if φ ≡ p and p 6∈ L(s):
10 : return {u = (s, +, p)};
11 : return ∅;
12 : }

3.2.4 Update Application

As mentioned earlier, having found a set of modifications which when applied satis-

fies the property in the most minimal sense, the application of the update is trivial.

Updateapply takes as argument the local model to be updated and the set of update

tuples U which contains the possible types of modification on M and applies the

updates based on the tuple arguments. Updateapply applies addition and removal

of states, addition and removal of relations and the substitution of states with new

states which satisfy propositions. Once the update tuple set has been exhausted

and all updates have been applied, Updateapply returns the modified local model

M ′ = (S′, R′, L′).

Example 3.4. Consider the scenario where we have the model M from Example 3.1

and some set of update tuples U = {((s7, s3),−, Null), (s7,−, Null), (s
∗,+, Null),

(s∗,+, c), ((s4, s
∗),+, Null)}. We execute Updateapply with the arguments M and

U . The first modification is ((s7, s3),−, Null), indicating the removal of the relation

(s7, s3) from the relation set. The element type of u[0] and addition or removal

modifier u[1] at lines 16 and 19 enables the modification of the relation set R with
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Algorithm 3.3: UpdateApply(M, s, U).

Input: M = (S, R, L), s ∈ S, U , where u ∈ U and u = (s|r, +|−, p),
where s|r is the state or relation modified, p the related
atomic proposition, and +|− the update modifier.

Output: Updated Model M ′, where (M ′, s′) |= φ.

01 : UpdateApply(M, s, U)
02 : {
03 : for u in U :
04 : if u[2] ! = Null //label satisfying substitution case

05 : if u[1] == + :
06 : L(s′) = L(u[0]) ∪ {u[2]}; //u[0] = s, u[2] = p

07 : if u[1] == − :
08 : L(s′) = L(u[0])− {u[2]};
09 : S ′ = S ∪ {s′};
10 : R′ = R− {(x, s), (s, y)|(x, s) ∈ R, (s, y) ∈ R} ∪

{(x, s′), (s′, y)|(x, s) ∈ R, (s, y) ∈ R};
11 : if u[0] ∈ S //case of state modification

12 : if u[1] == +:
13 : S ′ = S ∪ {u[0]}; //u[0] = s

14 : if u[1] == −:
15 : S ′ = S − {u[0]};
16 : else u[0] ∈ R //case of relation modification

17 : if u[1] == +:
18 : R′ = R ∪ {u[0]}; //u[0] = (si, sj)

19 : if u[1] == −:
20 : R′ = R − {u[0]};
21 : return (M ′, s′);
22 : }

R′ = R − {u[0]} at line 20. The next updates (s7,−) and (s∗,+) are identified

as state modification tuples at line 11 checking u[0]. Enacting these modifications

to the state set are the operations S′ = S − {u[0]} and S′ = S ∪ {u[0]} at lines

15 and 13, respectively. Next, the update ((s4, s
∗),+, Null) is handled similarly

to the relation removal case. Line 16 identifies this as pertaining to relations and

line 17 identifies the addition modifier. With this, the operation R′ = R ∪ {u[0]}

is performed, updating the relation set. Lastly, the update (s∗,+, c) performs an

operation functionally equivalent to modifying s∗ to satisfy the label c. A new label
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Figure 3.3: The resultant updated local model after Updateapply is executed.

function is created for s∗, L(s∗) = L(u[0]) ∪ {u[2]} at line 6. After this if s∗ is

a new state it is added to the state set, otherwise the operation is idempotent and

introducing the state will not re-add the state. The relations of the replaced states are

routed to the new state and removed from the replaced state. Finally, the resultant

updated local model derived can be seen in Figure 3.3.

3.2.5 Conjunctive Formula Update

Formulas based on conjunction token ∧ are considered compound formulas and are

similar to the base propositional case. In Algorithm 3.4, the list of sub-formula ar-

guments of the conjunctive formulas are aggregated (line 4 ). Updates are performed

by calling Updatec, using each sub-term and the set of updates required to satisfy

both sub-properties of the conjunction are returned to the calling function.

To determine if the two subformulas have no conflicting modifications after the

update process, we apply the modification to a copy of the original. We return these

updates as a conjunctive set of necessary update tuples (i.e. each of these updates

need to occur to satisfy the property).

What has occurred in this function is the processing of the model to discover

which will satisfy each argument of the conjunction, but it is often the case that

these recommended changes are not compatible, even though the formula as a whole

is satisfiable. Consider the property AFa∧ AF¬a applied to (M, s6) in Example 3.1.

To obtain the minimal update we substitute s6 with a state that satisfies both a and

¬a, which is not possible. Conflicts of this form can be identified by unioning the
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Algorithm 3.4: Update∧(M, s, φ).

Input: M = (S, R, L), φ, s, where s ∈ S and (M, s) 6|= φ.

Output: Update set U , where u ∈ U and u = (s|r, +|−, p)
where s|r is the state or relation modified, p the related
atomic proposition, and +|− the update modifier.

01 : update∧(M, s, φ) :
02 : {
03 : for φi in φ0 . . . φn :
04 : U = U ∪ Updatec(M, s, φi);
05 : if Updateapply(M, s, U) 6|= φ :
06 : return −1;
07 : return U ;
08 : }

returned update tuples and identifying updates which conflict with one another.

Conflicts can be defined as two or more opposing update tuples which require the

addition and removal of a state or relation, or the substitution of a state by another

which satisfies and doesn’t satisfy some label. Further, update conflict arises when

some state or relation is to be removed from the model, based on one argument but

the other argument requires addition of some element in the path where the removed

element existed. This relates to the problem of persistence between properties in

Subsection 2.2 of the former chapter, in that persistence is the characteristic of the

model maintaining the satisfaction of another earlier property, whereas in this case

we wish to maintain the persistence of two properties being concurrently applied,

which may require conflicting modifications. If a conflict is found between two

update tuples and there exists other updates which do not cause conflict and satisfy

the property, these can be returned. To guarantee the model satisfies both sub-

formulas Updatec is re-called once the valuation has been applied with Updateapply

such that we can ascertain no conflict exists.
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3.2.6 Modelling a Minimal Change Heuristic

From the previous characterisations, we can see that for modifying model regions,

weak bisimulation semantics tells us that an updated model and the original model

will be more similar than the original and some other updated model if the difference

between the models is at leaf states, or at greater depths of the tree-like model, for

any given possible modification to the underlying model. In local model update

there is no notion of preference between adding or removing a state, relation or

label. Each type of update is assumed as equal in its ability to lead the model

towards satisfying a property. We can compare these equivalent atomic updates

against one another by comparing depth of modification relative to the initial root

state.

Firstly, we note that if for two update sets U1,U2, if U1 ⊂ U2, it is reasonable

to assume the subset of the two being a better update of the two. Either will

satisfy the property, but the subset will necessarily be minimal. Next, in the case

where multiple updates are required at different depths, we apply the update depth

heuristic to determine which collection of updates is optimal.

This notion of update ties in with weak bisimulation semantics from Definition

2.5 in that it is a process of mapping branching similarities between some original

model and an admissible model which satisfies the property through minor modifica-

tions. The differences between the original model and its admissible candidate exist

as the update tuple set, describing the steps needed to satisfy the property. With

two update tuples we can determine ordering by allowing preference to modifications

which occur more regularly deeper.

To quantitatively compare the relative depths, we define depth(U) as the set of

cardinal depths of states in M , where an update is occurring with respect to the

model, or depth(U) = {depth(M, s)|∃(s,+|−, p) ∈ U}. We define depth(M, s) as

the individual depth of s with respect to M , such that it is the number of relations

in the path connecting root s0 to s inM . We can compare integer depth sets relative

to the root using the operator ≺, where

depth(U1) ≺ depth(U2)
def
= ∀d1 ∈ depth(U1) ∃d2 ∈ depth(U2), such that d1 < d2.
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Using this we can match each depth d in one update depth set to the other. If

there exists some greater depth d for each depth in the first set, we say U is more

minimal from weak bisimulation semantics. Finally, if all metrics for minimal update

are otherwise equal we can use the cardinality of update tuple sets U1,U2 to finally

decide which is the more minimal (i.e. |U1| < |U2|).

Algorithm 3.5: minChange(U1, U2).

Input: U1, U2, where U1, U2 are update sets, and u ∈ U , where
u = (s|r,+|−, p) and s|r is the state or relation modified,
p the related atomic proposition, and +|− the update
modifier.

Output: U , where u ∈ U and Updateapply(M, s, U) |= φ.

01 : minChange(U1, U2) :
02 : {
03 : if U1 ⊂ U2 :
04 : return U1;
05 : if U2 ⊂ U1 :
06 : return U2;
07 : else if depth(U2) ≺ depth(U1):
08 : return U1;
09 : else if depth(U1) ≺ depth(U2):
10 : return U2;
11 : else if |U1| < |U2|:
12 : return U1;
13 : else:
14 : return U2;
15 : }

Example 3.5. Application of Updatec() to the model M , represented as the transi-

tion graph in Figure 3.4 has determined three update sets which will satisfy the prop-

erty φ if applied to (M, s). These are U1 = {(s4,−, y), (s3,−, y)} U2 = {(s4,−, y),

(s5,−, y), (s6,−, y)} U3 = {(s2,−, y), (s5,−, y), (s6,−, y)}. To ascertain the better

update we determine the depths of the update states relative to the model’s root state

using depth(). We find depth(U2), to be the most minimal change based on prior

semantics.
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Figure 3.4: Transition graph of (M, s) in Example 3.1.

3.2.7 Disjunctive Formula Update

The disjunctive update function Update∨, described in Algorithm 3.6 operates sim-

ilarly to the conjunctive case. The set of sub-formula arguments are aggregated and

update is applied using the Updatec call mentioned earlier. In this case however

only one update set needs to be returned to the calling function, the update which

will create a model closest to the original based on weak bisimulation ordering. For

this reason a function which determines the more minimally modifying update set

between multiple options is necessary. This is implemented in disjunction and will

be described in the subsequent section.

Algorithm 3.6: Update∨(M, s, φ).

Input: M = (S, R, L), φ, s, where s ∈ S and (M, s) 6|= φ;

Output: Update set U , tuple u = (s|r, +|−, p), where s|r is the state
or relation modified, p the related atomic proposition, and
+|− the update modifier.

01 : Update∨(M, s, φ) :
02 : {
03 : U = Updatec(M, s, φ1);
04 : for φi in φ2 . . . φn :
05 : U = minChange(Updatec(M, s, φi), U);
06 : return U ;
07 : }

For each disjunctive sub-formula given in the property, a call to Updatec is

made with the model and current state as argument. This returns an update set U ,
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which can be compared against the other generated update sets based on the weak

bisimulation heuristics and determine which is closest to the original model. This

is done by generating the first update set as a basis of comparison as optimal, then

iterating through the other sub-formulas and comparing the new formula against the

current most optimal update set. If the minimal change heuristic finds the newly

generated update set to be closer to the original than the current optimal update

set, the new update set is set as the most optimal update. Once each sub-formula

has been tested, the remaining update set will be the update which satisfies the

property and is closest to the original model. This function accepts n formulas, such

that an arbitrary amount of formula arguments in the disjunction can be accepted.

In the case that some sub-formula satisfies the model from the given state, the

null update ∅ is returned. The heuristic would class this as the most minimal update

set, as it would effect no modification to the underlying model and thus be vacuously

closest to the original model. The modularity of the heuristic function allows it to

be swapped out in the case a different set of minimal update semantics are required.

3.2.8 AX Formula Update

The function UpdateAX in Algorithm 3.7 is a derived implementation of the semantic

characterisations in Subsection 2.4.2, from the previous chapter and is the base case

for universal temporal operations. The semantics of universal next requires that all

immediate successor states from the current state satisfy the sub-formula given. This

was formally defined as (M, s) |= AXφ iff ∀s1 such that (s, s1) ∈ R, (M, s1) |= φ

in Definition 2.3.

There are four cases which need to be taken into account and three possible

atomic methods for update which will satisfy these cases. Firstly there exists the

case where the current state is a leaf, having no outward relations (line 7 ). For this

contingency there are two possibilities. We can create a new state s∗ with the set

of labels of the current state s and add a relation r = (s, s∗) between the current

and new state and apply the update procedure to the new state, using the sub-

formula φ0. This can be represented formally as S′ = S ∪ {s∗}, R′ = R ∪ {(s, s∗)}

and L′(s∗) = L(s). In the algorithm, this is represented as the update tuple set
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U = {(s∗,+, Null), ((s, s∗),+, Null), (s∗,+, L(s))}∪Updatec(M, s∗, φ0). It is also

possible to introduce a new self-loop to the relation R′ = R∪{(s, s)} and update the

state by the sub-formula, such that there exists a path in the model which satisfies

universal next semantics.

Algorithm 3.7: UpdateAX(M, s, φ).

Input: M = (S, R, L), φ, s, where s ∈ S and (M, s) 6|= φ;

Output: Update set U , where u ∈ U and u = (s|r, +|−, p), where s|r
is the state or relation modified, p the related atomic
proposition, and +|− the update modifier.

01 : UpdateAX(M, s, φ)
02 : {
03 : if (s, s) ∈ R and (M, s) 6|= φ0: //self loop

04 : 1. if ∃x, where (s, x) ∈ R, (M,x) |= φ0 and x 6= s:
05 : U = U ∪ {((s, s),−, Null)};
06 : 2. U = U ∪ Updatec(M, s, φ0);
07 : if 6 ∃x ∈ S, where {(s, x) ∈ R} : //no branches

08 : U = U ∪ {(s∗,+, Null)} ∪ {(s∗,+, L(s))}
· · · ∪ Updatec(M, s∗, φ0);

09 : if ∃x ∈ S, where {(s, x) ∈ R} ∧ (M, x) |= φ0 :
//branch and there exists satisfied states

10 : for some x ∈ S where {(s, x) ∈ R} and (M, x) 6|= φ0 :
11 : 1. U = U ∪ Updatec(M,x, φ0);
12 : 2. U = U ∪ {((s, x),−, Null)};
13 : if 6 ∃x ∈ S where {(s, x) ∈ R} and (M, x) |= φ0 :

//branch, no satisfying states

14 : for some x ∈ S, where {(s, x) ∈ R} and (M, x) 6|= φ0 :
15 : U = U ∪ Updatec(M, x, φ0);
16 : for all x ∈ S, where {(s, x) ∈ R} and (M, x) 6|= φ0 :
17 : 1. U = U ∪ Updatec(M, x, φ0);
18 : 2. U = U ∪ {((s, x),−, Null)};
19 : return U ;
20 : }

Secondly, there is the case where the current state has successors, but no one

state satisfies the sub-formula (line 13 ). In this case, we can use some combination

of relation removal and state substitution, such that there exists at least one state

transitioned to by the current state which satisfies the sub-formula. For state removal

we represent an updated relation set as R′ = R − {(s, x)|x ∈ S} and state set as
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S′ = S − {s ∈ S}. State substitution can be done in the same way as mentioned

in the propositional update case. A variation on this is the case where transitioning

states exist which satisfy the sub-formula (line 9 ). In this case we may remove all

transitions to states not satisfying the sub-formula or apply the same approach as

if there were no satisfying states in the same way as referenced earlier.

Finally, there exists the case where a relation exists between a state and itself

(line 3 ). In the case that there exist other satisfying branches the self loop can be

removed to satisfy the property, otherwise the state can be substituted based on the

sub-formula to complete the update.

3.2.9 AG Formula Update

As mentioned in the semantic characterisations section of the previous chapter,

the universal global temporal token requires that every state reachable from the

current state satisfy the sub-formula given. This was expressed as (M, s) |= AGφ

iff ∀π = [s0, s1, . . .](s0 = s) and ∀si ∈ π, (M, si) |= φ, in Definition 2.3. To do

this, we need to traverse the tree-like model from the state given as argument, in a

depth-wise manner. We then apply Updatec to each state to determine if each state

satisfies the sub-formula. In the following chapter we go further into the specifics

of how depth-first search is implemented in this system, in this chapter we abstract

out the traversal process and just refer to paths.

The base case for update is the initial state not satisfying the underlying formula

(line 4 ). In this case we cannot perform some update which removes the initial state,

as there needs to exist at least one state which satisfies the global property and

removing the root state makes any paths from the initial inaccessible. In the case

the initial state does not satisfy the initial property, we call Updatec to of replace the

state s0 with s∗0, using the method proposed in Updatep (if the sub-formula of AG is

atomic). Otherwise, Updatec will route it to the proper update, be it a temporal or

propositional formula. It is possible that the sub-formula contains nested temporal

operations; this can create scenarios where the satisfaction of two or more states

can be enacted by applying some modification to the one area, in effect solving

two or more property violations with one fix. To identify duplicate updates which
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Algorithm 3.8: UpdateAG(M, s, φ).

Input: M = (S,R, L), φ, s, where s ∈ S and (M, s) 6|= φ;

Output: Update set U , where u ∈ U and u = (s|r, +|−, p),
s|r is the state or relation modified, p the related
atomic proposition, and +|− the update modifier.

01 : UpdateAG(M, s, φ) :
02 : {
03 : for all paths π = [s0, . . . , si, . . .] in M :
04 : if s == s0 :
05 : U = U ∪ Updatec(M, si, φ0);
06 : if si ∈ π and (M, si) 6|= φ1:
07 : U = U ∪ Updatec(M, si, φ0);
08 : if 6 ∃x ∈ S where {(s, x) ∈ R} : //si is a leaf

09 : U = U ∪ {((si−1, si), −)};
10 : if Updatec(Updateapply(M, s,U), s, φ) == ∅ :
11 : //Update tuples satisfies formula

12 : return U ;
13 : else:

14 : return -1;
15 : }

satisfy the property for different states, update possibilities are iterated over and

duplicates are eliminated in the update sets. Analysing the set, we can see that

some smaller set of updates will satisfy each individual state applicable to the AG

temporal operation.

From here, states can be replaced or removed to satisfy the property (lines

7, 8 ). Another important update which can occur with AG involves state leaves

which do not satisfying the property. Applying state removal to leaves which do not

satisfying the property preserves tree-like model structure, persistence conditions,

and can return a model which is closest to the original based on weak bisimulation

ordering.
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In Section 5.2 of Chapter 5, we investigate a case study using temporal properties

containing AG tokens with nested AF tokens. These properties assert that in all

states of a local model, if some property is true, then at all future states some

property will become true. We propose an algorithm for AF in the following section.

Example 3.6. Consider the model M given in Example 3.1. We wish to guarantee

that (M, s) |= AG(a ∧ b→ AFc). Applying equivalences we push negation to propo-

sitional atoms and derive the property φ ≡ AG(¬a∨¬b∨AFc). We pass the model

and property to a model checker to find (M, s) 6|= φ, and receive three counterexam-

ples explaining the violation. These include π1 = [s1, s2, s5, s3, s4, s7, s3,

. . .], π2 = [s1, s5, s6], and π3 = [s1, s5, s3, s4, s7, s3, . . .].

Using these counterexamples, we construct a tree-like local model M = (S,R,L),

where S = {s1, s2, s3, s4, s7, s5, s6, s25, s23, s24, s27}, R = {(s1, s2), (s2, s25),

(s5, s3) (s3, s4), (s4, s7), (s7, s3), (s1, s5), (s5, s6), (s25, s23), (s23, s24),

(s24, s27), (s27, s23)} and L(s1) = {a}, L(s2) = L(s3) = L(s4) = L(s6) = L(s7) =

L(s23) = L(s24) = L(s27) = {b}, L(s5) = L(s25) = {a, b}.

Applying Updatec routes control to UpdateAG with state s1 and property ¬a∨¬b∨

AFc. Applying propositional logic to s1 finds (M, s1) |= ¬b, such that its branches

can be checked for satisfaction. Applying Updatec to s5 finds (M, s5) 6|= ¬(a∧b) and

s5 has no reachable future state which satisfies c. Thus, the modifications which will

satisfy this branch of the local model are U1 = {(s5,+, a)}, U2 = {(s5,+, b)}, U3 =

{(s3,+, c), (s6,+, c)}. Applying minChange() finds that of the three candidates U3

is the most minimal.

Applying this process to the second branch of s1 finds s2 satisfies the sub-property

of AG (M, s2 |= ¬a) but (M, s25) 6|= ¬a ∨ ¬b ∨ AFc. Following the approach

used for the former branch we see the updates possible include U1 = {(s25,+, a)},

U2 = {(s25,+, b)}, U3 = {(s23,+, c)}. Applying minChange() finds that of the three

candidates U3 is the most minimal. On termination, UpdateAG returns the update

tuple set U = {(s3,+, c), (s6,+, c), (s23,+, c)}.
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3.2.10 AF Formula Update

To satisfy a model (M, s) by a universal future token, the sub-formula of the AF

token needs to be satisfied at some individual future state, along all paths accessible

from the current state. In Chapter 2, Definition 2.3 this was formally referred as

(M, s) |= AFφ iff ∀π = [s0, s1, . . .](s0 = s), ∃si ∈ π, such that (M, si) |= φ5.

Algorithm 3.9: UpdateAF (M, s, φ).

Input: M = (S,R, L), φ, s where s ∈ S and (M, s) 6|= φ;

Output: Update set U , where u ∈ U and u = (s|r, +|−, p),
where s|r is the state or relation modified, p the related
atomic proposition, and +|− the update modifier.

01 : UpdateAF (M, s, φ) :
02 : {
03 : for all paths πi = [s0, . . . , si, . . .] in M :
04 : for si in πi:
05 : ∃si s.t. (si, si) ∈ R ∧M, si 6|= φ0:
06 : U = U ∪ Updatec(M, si, φ0); //self loop case

07 : 6 ∃x ∈ S s.t. x ∈ π ∧ (M, x) |= φ0 :
08 : select s ∈ S s.t. 6 ∃x ∈ S where {(s, x) ∈ R} :
09 : U = U ∪ Updatec(M, si, φ0); //leaf case

10 : ∃π = [s0, . . . , si−1, si, . . . , si, . . .]: //cyclic case

11 : select some si ∈ π s.t. (M, si) 6|= φ0:
12 : 1. U = U ∪ Updatec(M, si, φ0);
13 : for all sx ∈ π = [s0, . . . , si] where ∃sy, s

′
y s.t.

· · · (sy 6= s′y, (sx, sy) ∈ R and (sx, s
′
y) ∈ R):

14 : U = U ∪ UpdateAF (M, sx, φ0);
15 : 2. U = U ∪ Updatec(M, si+1, φ1);
16 : return U ;
17 : }

To obtain the most minimal update by weak bisimulation semantics, as illus-

trated in the semantic characterisations, update needs to occur at path leaves, state

self loop relations and at some state within SCCs (lines 5, 10 and 15 ). Modifica-

tion only needs to occur on all unsatisfied branches once; if a path is satisfied once

5In implementation, the equivalence of AFφ with A[⊤ U φ] is used to promote code re-use
of UpdateAU .
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closer to the initial state, the associated lower paths are released from satisfying the

sub-formula. As local models will have a tree-like structure, traversal can continue

over paths which have yet to be satisfied. In implementation, reference to the states

are saved on a stack and accessed when the current path is satisfied.

Another possibility for minimal update given previously to satisfy persistence

properties, is to extend a finite path by creating a new state s∗, such that S′ =

S ∪{s∗} and introducing a relation between s∗ and an unsatisfied leaf state s on the

path. The state’s label function can be assigned the label function of s, such that

L(s∗) = L(s) and can be updated by Updatec using the sub-formula φ. This consti-

tutes the update set U = {(s∗, +, Null), ((s, s∗), +, Null)} ∪ Update(M, s∗, φ) ∪

{(s∗,+, L(s))}.

Strongly connected components (SCCs) in tree-like models are also a special

case for consideration as illustrated in semantic characterisations. As the notion of

tree depth does not apply for SCCs due to their cyclic nature, we need to consider

which state to update in a SCC and apply accordingly. As a SCC constitutes an

infinite path, some state needs to satisfy the property for the path. Two reasonable

places to apply update would be the first state leading into the SCC from the path,

or the final state of the SCC. We could then apply AF semantics to any subsequent

state within the SCC which has linear paths transitioning outwards from the SCC

that could constitute an unsatisfied path. In this implementation we consider the

former.

Example 3.7. Consider the model M represented by the transition graph in Fig-

ure 3.1. Suppose we require (M, s) to satisfy property AX(AF (b → c)). Passing

M and φ to a model checker, we derive the counterexamples describing the paths π1 =

[s1, s2, s3, s4, s7, s3, . . .], π2 = [s1, s5, s6] and π3 = [s1, s2, s5, s3, s4, s7, s3, . . .].

Using these counterexamples we create the tree-like local model C = (S, R, L) where

S = {s1, s2, s3, s4, s7, s5, s6, s25, s23, s24, s27}, R = {(s1, s2), (s2, s3), (s3, s4),

(s4, s7), (s7, s3), (s1, s5), (s5, s6), (s2, s25), (s25, s23), (s23, s24),

(s24, s27) , (s27, s23)} and L(s1) = {a}, L(s2) = L(s3) = L(s4) = L(s6) = L(s7) =

L(s23) = L(s24) = L(s27) = {b}, L(s5) = L(s25) = {a, b}.
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Applying equivalences to φ, we transform AXAF (b→ c) into AXAF (¬b∨c) and

use Updatec(M, s, φ) to derive a modification. Control routes to UpdateAX which

then applies UpdateAF to s5 and s2 by formula ¬b∨c. To satisfy the formula at these

states some future state needs to satisfy ¬b ∨ c, such that s 6|= b or s |= c. Applying

UpdateAF to s5 yields s6 being updated by c, based on s6 being a leaf state. This

returns the update tuple (s6,+, c). On the next branch from s2, UpdateAF returns

the update tuples (s3,+, c) and (s23,+, c). This gives the overall returned update as

U = {(s6,+, c), (s3,+, c), (s23,+, c)}.

3.2.11 AU Formula Update

Semantics of AU requires that the first property of the sub-formula hold along

all paths accessible from the current state, until the second property argument is

satisfied on the given path. In Definition 2.3 of the prior chapter, we formally

defined this as (M, s) |= A[φ1 U φ2] iff ∀π = [s0, s1, . . .](s0 = s), ∃si ∈ π, such that

(M, si) |= φ2 and ∀j < i, (M, sj) |= φ1. For the purpose of identification, the first

property will be referred to as the pre-condition and the second the post-condition.

Each path in this case can be vacuously satisfied by making the initial state s0

satisfy the post-condition, or traversing each path until a state is encountered which

satisfies neither property and updating it by the post-condition sub-formula. While

the first is not a minimal update, the second will constitute a minimal update, as

it is necessary to have the state satisfy the property by one of the sub-properties.

To enact the most minimal change, each tree-like path is traversed in a depth-wise

manner, much like in UpdateAF .

Each state along the path is checked to determine if it satisfies the pre-condition

and post-condition sub-formulas φ1 and φ2. If it satisfies the post-condition, the

branch is satisfied and a new branch previously unchecked can be analysed (line 4 ).

If the state satisfies the pre-condition sub-formula and it is a leaf state, a self looping

state (s, s) ∈ R, or SCC entry state, the state is updated by the post-condition

formula and an unchecked branch is analysed (line 6 ). If the state satisfies the pre-

condition and doesn’t satisfy the earlier conditions, we move to the next available

state at a lower tree-branch and apply the AU process. Otherwise if a state satisfies

neither the pre-condition or post-condition formula, Updatec can be called to satisfy
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Algorithm 3.10: UpdateAU(M, s, φ).

Input: M = (S,R, L), φ, s, where s ∈ S and (M, s) 6|= φ;

Output: Update set U , where u ∈ U and u = (s|r, +|−, p),
where s|r is the state or relation modified, p the related
atomic proposition, and +|− the update modifier.

01 : UpdateAU(M, s, φ) :
02 : {
03 : for all paths π = [s0, . . . , si, . . .] in M :
04 : select least si ∈ π where (M, s) 6|= φ0 ∨ φ1:
05 : U = U ∪ Updatec(M, si, φ1);

//unsatisfied path where neither formula is true

06 : ∃si s.t. (si, si) ∈ R and (M, si) 6|= φ1:
07 : U = U ∪ Updatec(M, si, φ1); //self loop case

08 : ∃si s.t. si ∈ π∧ 6 ∃x where {(s, x) ∈ R} ∧ (M, si) 6|= φ0:
//leaf case

09 : 1. U = U ∪ Updatec(M, si, φ1);
10 : 2. U = U ∪ {(s∗,+, φ1), ((s, s∗), +)}

∪ Updatec(M, s∗, φ1);
11 : ∃π = [s0, . . . , si−1, si, . . . , si, . . .]: //cyclic case

12 : select some si ∈ π such (M, si) 6|= φ1:
13 : if (M, si) 6|= φ0:
14 : U = U ∪ {Updatec(M, si, φ1)};
15 : for all sx ∈ π = [s0, . . . , si] where ∃sy, s

′
y s.t.

· · · (sy 6= s′y, (sx, sy) ∈ R and (sx, s
′
y) ∈ R):

16 : U = U ∪ UpdateAU(M, sy, φ);
17 : return U ;
18 : }

the branch based on the post-condition sub-formula. It is also possible to extend the

path by creating a new state with the previous states label function, but updated

by the post-condition and a relation occurring between the leaf state and new state.

This update rests on the condition that the path leading from the initial state

satisfies the pre-condition at each state but does not satisfy the post-condition in

the path.

As with AF, path semantics for AU require that the post-condition be satisfied at

some state in a SCC, AU differs in that the post-condition satisfying state be trailed

by states satisfying the pre-condition. To demonstrate a case of a local model being
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updated by an ACTL formula containing an AU token, we give Example 3.7.

Figure 3.5: Tree-like model generated from counterexamples of (M, s) 6|= A[a
U c] in Example 3.5.

Example 3.8. Consider the Kripke model represented in the transition graph in Fig-

ure 3.1. Suppose we require the model (M, s1) satisfy the properties A[a U AG(b)]

and A[a U c]. Applying this to the model, we find that although it satisfies the prior

property, the latter is unsatisfied, generating the counterexamples π1 = [s1, s2],

π2 = [s1, s5, s2], π3 = [s1, s5, s6]. We use these counterexamples to gen-

erate a tree-like model M = (S,R,L), where S = {s1, s2, s3, s5, s6}, T =

{(s1, s2), (s1, s5), (s5, s3), (s5, s6)}, L(s1) = {a}, L(s2) = L(s3) = L(s6) = {b},

L(s5) = {a, b}, shown in Figure 3.5.

We apply the update function Updatec withM , s1 and the property φ ≡ A[a U c].

Updatec passes control to UpdateAU with the former arguments and UpdateAU as-

certains satisfaction of a and b individually at s1, through Updatep. Updatep finds s1

satisfies the pre-condition a but not c; with this, the UpdateAU picks the branch with

s5 and saves the other branch on a stack for processing. UpdateAU applies the same

process to s5, finding it also satisfies the pre-condition, again passing to the lower

branch s3 and saving s6 on the stack for branches to visit. s3 is found by Updatep

to satisfy neither a or c. To solve this, the most minimal change would be to replace

s3 with a state that satisfies its previous labels, but also c. This is represented in the

update set U = {(s3,+, c)}. As this was a leaf state and now satisfies the formula,

the next branch is checked from the branch stack, s6. s6 is found to also be a leaf

state and can be handled in the same manner s3 was, giving a running update set of

U = {(s3,+, c), (s6,+, c)}. It is also the same for the final branch on the stack s2,

which satisfies neither condition. Being the final branch, the algorithm terminates,

returning the update set of U = {(s3,+, c), (s6,+, c)}.
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3.3 Constraint Automata

To enact constraint compliance as described in Definition 2.10, we define two sepa-

rate functions with the tasks of modifying a tree-like model to comply to the variable

and action constraints given for a model update session. To begin we analyse the

variable constraint automata compliance algorithm ComplianceV.

ComplianceV first examines each transition function δ(sp, a) = sq in VC(V, A),

from which it identifies those state transitions (si, sj) in model (M, s) not complying

to such variable bindings through action a. Then ComplianceV will minimally

change the corresponding states so that the newly formed model complies to the

given variable constraint automaton. Note that in ComplianceV, sp, sq are states in

automaton VC(V, A), si, sj are states in model (M, s), and s′j is a state in model

(M ′, s′). This is achieved in such a way that ComplianceV is recursively calling

itself (i.e. line 8 ).

Algorithm 3.11: ComplianceV ((M, s), VC(V, A)).

Input: A tree-like model (M, s) and a variable constraint automaton
VC(V,A);

Output: Tree-like model (M ′, s′) complying to VC(V,A);
01 : ComplianceV ((M, s),VC(V,A)) :
02 : {
03 : for all (si, sj) in M labelled by action a:
04 : if there exists a transition δ(sp, a) = sq in VC(V,A)
05 : and sp ⊆ si:
06 : if sq 6⊆ sj:
07 : form a new tree-like model (M ′, s′) in which sj

is replaced by s′j such that sq ⊆ s′j and
Diff(L(sj), L(s

′
j)) is minimal;

08 : ComplianceV ((M ′, s′),VC(V,A));
09 : else:
10 : return (M ′, s′);
11 : }

ComplianceA works in a similar fashion to ComplianceV ; it examines each tran-

sition function δ(sap, a) = saq in AC(A) and each state smi in S, then seeks to match
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each saq to some smj in AC(A) (lines 3, 7 and 11 ). We can then determine if there

is some smj which corresponds to some saq , violating the semantics of the given ac-

tion a, described in Definition 2.9. In ComplianceA sap, s
a
q refer to states in the

automata and smi , s
m
j refer to states within the model. ComplianceA finishes by

recursively calling itself to guarantee other branches comply to the automaton and

the modification effected compliance.

Algorithm 3.12: ComplianceA((M, s), AC(A)).

Input: A tree-like model (M, s) and a variable constraint automaton
AC(A);

Output: Tree-like model (M ′, s′) complying to AC(A);
01 : ComplianceA((M, s),AC(A)) :
02 : {
03 : if for some L(si) ⊆ L(sa) and some sj, δ(si, next) = sj:
04 : if there exists some (sa, sb) ∈ R in M and sj ⊆ sb

. . . does not hold:
05 : form a new tree-like model (M ′, s′) in which all sb are

replaced by s′b such that L(sj) ⊆ L(s′b) and
Diff(L(sj), L(s

′
b)) is minimal;

06 : if for some L(si) ⊆ L(sa) and some sj, δ(si, preceded) = sj:
07 : if there exists some path π = [s0, . . . , sa, sa+1, . . . , sb, sb+1, . . .]

in M where L(si) ⊆ L(sa) and no sb where
L(sj) ⊆ L(sb) and sb > sa.

08 : form a new tree-like model (M ′, s′) in which there is some sb
where sb > sa is replaced by s′b such that L(sj) ⊆ L(s′b) and
Diff(L(sb), L(s

′
b)) is minimal;

09 : if for some L(si) ⊆ L(sa) and some sj, δ(si, exclusive) = sj:
10 : if there exists some path π = [s0, . . . , sa, sa+1, . . . , sb, sb+1, . . .]

. . . where L(sj) ⊆ L(sb)
in M and sj ⊆ sb where L(si) ⊆ L(sa) and there is some sb

11 : form a new tree-like model (M ′, s′) in which sb is replaced by
s′b such that L(sj) 6⊆ L(s′b) and
Diff(L(sb), L(s

′
b)) is minimal;

12 : ComplianceA((M ′, s′), AC(A));
13 : else:
14 : return (M ′, s′).
15 : }
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3.4 Algorithm Example - Microwave Oven

To demonstrate the application of algorithm we will apply the approach to the

microwave oven model example from Chapter 1. As shown earlier, the microwave

oven model is a simple example for demonstrating how seemingly correct approaches

can violate common-sense safety properties. Earlier we extracted two counterexam-

ples which explained the violation in the model of the property φ ≡ AG(start →

AF(heat)). One of the counterexamples contains a SCC witnessing Start sat-

isfied at a state and Heat never becoming true at any state in the SCC. This

describes the infinite path π1 = [s1, s2, s5, s3, . . . , s1, . . . ] and can be de-

scribed with the local model M = (S, R, L), where S = {s1, s2, s3, s4}, R =

{(s1, s2), (s2, s5), (s5, s3), (s3, s1)}, and L(s1) = ∅, L(s2) = {Start, Error},

L(s5) = {Start, Close, Error}, L(s3) = {Close}. To begin the process we exe-

cute the main function Updatec, passing the local model M , initial state s1 and the

property φ.

Figure 3.6: Counterexample for (M, s) 6|= AG(start → AF(heat)).

The property is analysed to determine which function to route control to based

on property semantics. As AG is the most immediate in the formula parse tree

UpdateAG is called with the model, initial state and sub-formula start→ AF(heat)

as argument. Semantics of AG dictate that each state accessible from the current

state should satisfy the sub-property. We traverse the sub-model from s1, creating

a new traversal object that successively returns states in the SCC, and then calling
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Updatec on each state with the sub-property. Applying the sub-property to s1

we find that we need to ascertain if ¬start is true or if at some given future heat

becomes true (Updatec routes control to Update∨). Here s1 is found to satisfy ¬start

as start 6∈ L(s1). This will return the null update ∅ and Update∨ will also return

the null update as one of the two terms are satisfied, thus satisfying semantics.

UpdateAG will find s1 satisfies the sub-property.

Checking s2 will find it does not satisfy the property, as Update∨ and subse-

quently Updatep will be called for ¬start; Updatep will find start 6∈ L(s2). The

system will return the possible repair of u = (s2, −, Start). Returning to Update∨

its second argument AF(heat) is checked. From s2 each path is checked to determine

if any state satisfies the sub-formula heat. As there is only one path, a SCC, we

check every state and find no state on the path satisfies heat. As notions of depth

do not apply to cyclic behavior we may update at the first state in the SCC Heat.

This will satisfy s2, we also need to consider s5 and s3.

Applying the same process to s5 and s3 we find neither satisfies the property

and both may be modified to satisfy the property by updating the state by “¬start”

or by updating some arbitrary state in the future by Heat. To satisfy AG temporal

operator semantics each state must satisfy the property. Combining the possible

updates for each individual state we can substitute each state by a new state satis-

fying ¬start, substitute some state in the SCC by a new state satisfying heat once

to satisfy all states, or some combination of the two. We can see that the approach

which is most minimal based on weak bimsimulation semantics in this case is to

update one arbitrary state once by heat in the SCC, s′2. This is because this one

update will satisfy both s5 and s2 with one update, whereas negating start requires

substitution of both s5 and s2. The model can then be re-checked to guarantee the

satisfaction of the property still holds for the model as a whole. Finally we derive

a model M ′ = (S′, R′, L′) using the update set U , where S′ = {s1, s
′
2, s5, s3},

R′ = {(s1, s
′
2), (s

′
2, s5), (s5, s3), (s3, s1)}, L(s

′
5) = {start, heat, error} as shown in

Figure 3.7.
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Figure 3.7: Update (M ′, s) |= AG(start → AF(heat)).

3.5 Summary

The algorithms presented in this chapter are an abstract framework and represent

the concepts of localised update embodied in algorithms and were originally derived

from the characterisations. In the following section we will go into the implementa-

tion details of the prototype local model update system, discussing formula parsing,

highlight important elements of the core functionality and show how the algorithms

are utilised to effect update in the NuSMV language specific context. This will give

a more grounded and detailed view of the system implementation and more insight

into application.



Chapter 4

Local Model Update Prototype

- l-Up

4.1 Introduction

In earlier chapters we have explained how we generate abstract algorithms for en-

acting localised model update over tree-like models. In this chapter we describe the

capabilities of the l-Up local model update prototype software tool, and examine

the subtleties and limitations of the prototype generated. l-Up was designed in the

Python programming language with an emphasis of readability and future adaption

by researchers in this field. Python was also adopted for its reputations for rapid

prototyping and sound code in industry and the AI community. Rapid prototyping

was a desired attribute as the PhD project has a restricted time frame; algorithms

in this chapter are simplified versions of the coded implementation designed in the

Python programming language to assist readability. The full implementation can

be accessed from the School of Computing and Mathematics page

http://scm.uws.edu.au/∼mkelly/l-upProject.html

4.1.1 Restrictions on Prototype Development

For the sake of clarity, we stress that this initial implementation should be taken

as a prototype to demonstrate a proof of concept for the theory presented in this

dissertation. At this current point the prototype can only provide candidate fixes
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for tree-like models in two forms, simple Kripke structures as demonstrated in the

examples presented in previous chapters, or through local models generated from

counterexamples extracted from NuSMV model checking sessions. The local models

generated from NuSMV sessions are limited to single finite or infinite counterexample

traces. This is because NuSMV only returns the single counterexample for a given

temporal property in a checking session. The capability, however, exists in l-Up for

handling tree-like local models.

As shown in the characterisations of Chapter 2, complexity limits the size of local

models and nesting depth of temporal properties passed to the prototype. We will

demonstrate this further in case studies presented in the following chapter and show

that time to compute grows quickly with an increase of model size, and with nesting

of temporal properties. This prototype was generated as a means of demonstrating

the feasibility of update localisation to isolate a fault location and reduce the repair

space to the region causing the fault. The system will provide candidate fixes and

extract information from the SMV model specification file including checking session

details to assist the developer.

In the future we hope to see this prototype extended such that it can be used as

a global modification to a NuSMV specified model based on temporal specifications.

At the current time the following features are available:

• Extracts variables and module information from a given smv file to assist

update;

• Translates the counterexamples into interpretable local models;

• Computes candidate local model updates such that the local model satisfies a

given temporal property;

• Computes constraints such that constraint compliance is upheld.

With these defined features, we will comment on how the prototype can be

extended and implemented as a full universal local model update system in the

conclusion of this dissertation.
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4.1.2 System Overview

The system presented in this thesis uses a layered hierarchy to handle the necessary

levels of complexity in generating a candidate fix on a local model. The central script

session.py provides an interface to generate an update at a session level and provides

access to the majority of functionality provided in the other packages developed for

the project. From this script, the user can specify a model file location, temporal

properties, a constraint file and any debugging flags required.

In Figure 4.1, we show a high-level representation of the l-Up prototype struc-

ture. Further to the functionality discussed in the previous section we also note the

presence of the model checker NuSMV and the files used to specify the model and

constraint automata. Here, NuSMV has the effect of determining the satisfaction of

the temporal formula in the model specification file and returning counterexamples

explaining the failure in the model to satisfy the formula.

Figure 4.1: Implementation graph.
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Being a prototype, the files used for the update process are saved and all details

to an update session are stored in a reporting folder for analysis and such that

the system can be built upon and better researched in future development and

debugging. Another important note is that l-Up requires the PLY 3.3 package

available at http://www.dabeaz.com/ply/. This is necessary for the yacc and lex

modules to implement the parsers for the smvModule module, which parses macro

variable definitions, and also the formulaeOperators package prototype parser to

operate.

4.1.3 Prototype Development

Software Architecture and Technical Specifications

l-Up is written using the scripting language Python (version 2.6.2) [50] in the PyDev

project development environment (version 1.5.0.1) [2] and the software application

platform Eclipse (version 3.5.1, build M20090917-0800) [51]. In the following section

we will discuss important functionality used for providing update and interfacing

with NuSMV and comment on design aspects employed. For each Python module,

we will provide algorithms expressed as pseudo-code to exhibit the functionality

offered through the classes of each module.

In Figure 4.2 we show the file hierarchy for the l-Up project. On the shallowest

level (lines 1, 9, 12 and 26 ) we have the main packages providing the modules for

the update suite and the session module (line 31 ) which brings together each of the

packages and provides an abstraction layer for the developer to interact with the

aspects of the update system at a high-level.

In this chapter we will demonstrate many of the features of l-Up SMV model

data extraction. We will use an example file available online of the gigamax cache

coherence protocol originally given in Ken MacMillans’ thesis Symbolic Model Check-

ing [75] and also available from the NuSMV example repository [100]1. gigamax.smv

was selected as a program for parsing for its clear syntax. It utilises many aspects

of NuSMV syntax and is non-trivial in terms of program size and modularity.

1See appendix A for referenced programs.
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l-Up Project
01 : — pyAutomata #Constraint Modules

02 : ⊢ action.py
03 : ⊢ actionAutomata.py
04 : ⊢ automataHandler.py
05 : ⊢ varAutomata.py
06 : ⊢ variableConstraintCheck.py
07 : ⊢ violation.py
08 : — pyModel #Local Model Update Modules

09 : ⊢ atom.py
10 : ⊢ auxFunctions.py
11 : ⊢ CEXReduct.py
12 : ⊢ elements.py
13 : ⊢ kripke.py
14 : ⊢ metrics.py
15 : ⊢ model.py
16 : ⊢ modelTraverser.py
17 : ⊢ scc.py
18 : ⊢ treelike.py
19 : ⊢ updateHeuristics.py
20 : ⊢ updateType.py
21 : — pySMV #Modules for parsing SMV content

22 : ⊢ smvCounterexample.py
23 : ⊢ smvModule.py
24 : ⊢ smvProgram.py
25 : ⊢ smvTools.py
26 : ⊢ smvTransition.py
27 : — pyFormula

28 : ⊢ ACTLOps.py
29 : ⊢ ACTLFormulaParser.py
30 : ⊢ evalOperators.py
31 : — session.py #Script to initiate an update session

Figure 4.2: File hierarchy for the l-Up local model update project.

Model Checking Functionality

The local model updater described in this chapter works by deriving counterexamples

from model checking sessions. To derive these counterexamples, we pass model

specification files to the NuSMV model checker. For this project NuSMV 2.4.3 is

used [16]. NuSMV is accessed via Python operating system calls with model files

passed as argument. NuSMV is called using a non-interactive session and an output

file of the result of the checking session is generated, labelled with a counterexample
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identifier and the current timestamp to identify when it was created. Further, the

flag −r is used to indicate a verbose output, giving additional model details such as

model state count, reachable states and model diameter.

Two levels of model checking are possible in the software presented: l-Up allows

control to be passed to NuSMV for SMV program model checking. Also, l-Up

provides a basic level of model checking at a prototype level with the simple programs

given in the thesis theoretical section. This will be analysed in the model section of

this chapter.

To initiate a NuSMV session, we pass a given program location to the NuSMV

executable and indicate a file to output the session to. This is done with the system

call

os.system(“NuSMV\\2.4.3\\bin\\nusmv -r \\” + self.filePath + “\ >” . . .

. . .+self.filePath.split(“\\”)[-1].replace(“.smv”, ’ ’) + “CounterEx.dat”)

4.2 pySMV Package

Functionality of the local model update approach requires that the implementation

has programmatic interaction with the NuSMV verification suite. This includes

extracting information from both the model specification file and any subsequent

counterexamples generated while checking a property. Both of these cases require a

full understanding of NuSMV syntax and methods of storing this information for use

in the prototype (and for future expansion to an industrial scope application). For

this purpose we have included a package to handle this task, the pySMV for l-Up

which includes the modules smvCounterexample.py for counterexample extraction,

smvProgram.py for model specification file parsing, and smvModule.py for NuSMV

file parsing at SMV program module level. The main Python modules of the pySMV

package contains 1100 lines of Python code.

To begin this section we look at the ability of l-Up to extract domain depen-

dent information from the given model file, including the smvTools, smvModule and

smvProgram modules.
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Assumptions

Counterexamples are derived from the model checking session and prior to this

syntax of the NuSMV program is checked. If syntax errors are encountered, NuSMV

will return and identify the found faults. Saying this, little error checking is necessary

in extracting variable information from NuSMV program files. If errors are found

or the program satisfies the temporal property NuSMV will return the appropriate

signals and terminate.

The pySMV package is designed with extracting variable domain information

from program specifications in mind. For the scope of this project information about

transition relations and initial values are not taken from the program. Only informa-

tion which allows us to determine variable domains for a local model is extracted in

the package. This package can easily be extended at a later date to extract transition

information; the smvTools package contains many regular expressions to handle this

task. For the purposes of this prototype, the pySMV package can handle limited

NuSMV syntax and type handling.

smvTools Module

In the package pySMV, modules share many common functionalities. To allow code

reuse, the module smvTools.py provides common functionality to extract counterex-

ample and program information. This includes storage of regular expressions for

parsing NuSMV files, functions for creating a file pointer to NuSMV files for file

I/O, extraction of file sections based on headers, and other miscellaneous function-

ality. Regular expressions in smvTools allow identification of reserved words from

NuSMV files. This includes program specification reserved words, variable type def-

initions and counterexample syntax. Regular expressions referenced in this chapter

for program and counterexample parsing are kept in smvTools and can be accessed

by importing the module.
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4.2.1 smvModule Module

Building a characterisation of each module in the smvProgram is an important step

towards understanding the program as a whole. For this reason we have developed a

class smvModule in the module smvModule.py, shown in Figure 4.12 with the task of

identifying the elements of SMV modules such as arguments, defined variables, their

types and domains and any relationships between declared modules or variables.

With this information we could develop a hash table of SMV modules indexed by

their hashable label, such that required information be derived by referencing the

name and the module attribute we wish to query.

We extract much of this behaviour into a class object for a dual purpose. Firstly,

this allows us to determine the nature of a variable given a valuation on a coun-

terexample state and extract information pertaining to variable types and domains

which will be useful when performing local model update. To be useful, we need

to be able to trace variables back through the modules they are defined in and

ascertain their type and domain. Secondly, this framework gives a foundation for

automatically generating variable dependency graphs and other domain dependant

information. This would allow us to automatically generate variable and action con-

straint automata to give improved update guidance and give future researchers a

better platform from which to interact with NuSMV model files.

To begin with, the SMV module main is considered as a special module and is

a reserved name for modules. Each NuSMV program will contain a module main

from where other modules can be referenced as composite types. This allows more

expressive behaviour in the constructed model. If a valid SMV program is analysed

there will at least be one processed module structure, the main module. SMV

modules can take arguments in the module header which effect the valuation of

other variables and their transition relations. These work as variables within the

scope of the referenced module.

To define the overall models transition system, modules define the initial and

2In the figure many of the methods have been removed for brevity. The smvModule
module provides 30 methods as of writing of the dissertation, however only central methods
are present.
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transition values for variables locally using the init() and next() calls (discussed

in Chapter 1). Modules also allow the declaration of additional attributes such as

inheritance from other modules using the is-a relation to enrich module behaviour.

We will analyse how we take into account these behaviours when extracting domain

information for counterexamples.

Algorithm 4.1: smvModule class definition.

01 : class smvModule():
02 : def init (self, rawLines, debug = 0):
03 : self.moduleName = “”# string
04 : self.moduleArgs, self.isa = [], [] # lists
05 : self.variables, self.varTypes = {}, {}# hash tables
06 : self.defines = {}
07 : def buildModule(self, lines, debug = 0)
08 : def processVariables(self, lines)
09 : def processVariableString(self, varLine)

Variable Reference Hash Tables

Each variable of a program can be mapped back to the module where it was defined.

For this reason we associate each module class object with hash tables indexing

the domain and type of each variable by its label. To derive these variables the

smvModule class object takes as argument a list of strings representing the variable

declaration for the module (Raw file input represented as a list of strings beginning

with the token VAR, and terminated by another SMV header, or the end-of-file

sentinel value). These lines are iterated over and parsed using regular expressions

defined in the smvTools module of the smv package. Variable types and domains

are identified and stored in the declared varType and variables table, respectfully

(lines 6 and 7 ).

Later in this section, we will look at reduction of variables in counterexamples

into symbolic valuations at a state, such that variables are representable as propo-

sitional atoms in local models.
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Comment: ‘- -[\W\w]’,
Variable Declaration Header: ‘VAR[\W\w]*’,
Temporal Specification: ‘SPEC[\W\w]*’,
Initial declarations: ‘INIT[\W\w]*’,
Variable next definition: ‘next(\W\w)*’,
Case Block: ‘[\W\w]*case[\W\w]*’,
End-case Block: ‘[\W\w]*esac[\W\w]*’,
Transition Assignment: ‘([\W\w]*):([\W\w]*)’,
Defines Assignment: ‘([\W\w]*) := ([\W\w]*)’,
Module Header: ‘MODULE([\W\w]*)’,
Assignment Header: ‘ASSIGN[\W\w]*’,
Defined variables: ‘DEFINE[\W\w]*’,
Initial Value for variable: ‘init\(([\W\w])\([\W ]:=([\W\w]);’,
Assignment: ‘([\W\w]*):[(]([\W\w]*)[)]’,
Assignment: ‘([\W\w]*);’,
IS-A Declaration: ‘ISA ([\W\w]*)’,

Figure 4.3: Regular expressions for module data extraction.

Defined Variables

NuSMV allows a system for simplifying variables by declaring macro variables repre-

senting propositional formulas made up of other variables defined in a module. One

example of this is in the gigamax.smv program in the bus-device module. bus-device

defines an abort variable be true if the REPLY-STALL bit is set or cmd is set to

read-shared or read-owned and the REPLY-WAITING bit is set. This is defined as:

abort := REPLY-STALL | (CMD = read-shared | CMD = read-owned)

& REPLY-WAITING.

These defined macro variables are used to the effect of succinctly defining com-

mon conditions which would otherwise need to be written in full in multiple parts

of the module. Defined variables also give more information about their purpose in

their defined label and can be used in temporal specifications as a means of syntac-

tic sugaring. For l-Up to interact with NuSMV programs in any meaningful way,

processing these defined variables is necessary. l-Up uses the formulae operators

parser from PLY to parse these formulas and applies a nested structuring based on

the formula tokens. These variable types are maintained in the defines hash table.
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Module Inheritance in NuSMV

Another aspect of NuSMV modules is that defined modules can inherit behaviour

from other modules. This has multiple purposes; chiefly it is a means of allowing code

reuse. In l-Up is-a relationships can be interpreted and allow a module to reference

variables defined in other modules. This is necessary to l-Up, when building a local

model from SMV specification files and a counterexample trace is-a relationships

allow reference to behaviour in other modules. Modules can then be checked to

define a given variable, and if it does, the domain and type information for the

referenced variable can be referenced in the local model. To show what is available

through the smvModule class we give an example using the module in the gigamax

class, memory.

Example 4.1. A counterexample state makes reference to variables originating

from the memory module of gigamax.smv. Calling the smvProgram class and in-

stantiating an object smvProg with the gigamax.smv file name (using the Python

object declaration smvProg = smvProgram(file path + “gigamax.smv”)), we refer-

ence the modules attribute of smvProg and use the label of memory to access the

information for the specific module (memModule = smvProg.modules[“memory”]).

This passes the reference of the smvModule object to the variable memModule which

has a module name available through memModule.moduleName. By referencing

memModule.moduleArgs we find memory takes the arguments [“CMD”, “REPLY-

OWNED”, “REPLY-WAITING”, “REPLY-STALL”]. By referencing memMod-

ule.varTypes we find memory has 4 variables, 3 boolean (busy, master, and reply-

stall) and an enumerable type variable cmd. To find the domain of the enumerable

type variable cmd we reference memModule.variables[“cmd”], which returns the list

[“idle”, “read-shared”, “read-owned”, “write-invalid”, “write-shared”, “write-resp-

invalid”, “write-resp-shared”, “invalidate”, “response”]. Finally, we find that the

module “memory” defines a macro variable “abort” which is true if

REPLY-STALL | ((CMD = read-shared | CMD = read-owned)

& REPLY-WAITING) | ((CMD = read-shared

| CMD = read-owned) & REPLY-OWNED) is true3.

3This formula structure is stored as a nested list such that its contents can be parsed
recursively.
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4.2.2 smvProgram Module

Having a method for representing each NuSMV module, we can analyse programs

as a whole and get a global image of how variables interact between modules. By

maintaining a hash table of modules indexed by their label, we can find process vari-

able declarations to determine variable domains and types to aid in the construction

of local models from counterexamples. The designed Python module smvProgram

defines methods which use recursive back-tracing between modules to find what

variable belongs to which module.

Algorithm 4.2: smvProgram class definition.

01 : class smvProgram():
02 : def init (self, filePath, debug = 0):
03 : self.filename = filePath.split(“\\”)[−1]
04 : self.modules = {} # hash table
05 : self.stateCount = 0
06 : def lookupVariable(self, variable, module)
07 : def calculateModStateSpace(self, debug = 0)
08 : def recModules(self, modStateSpaceDict, module, debug = 0)
09 : def traceVariable(self, variableTraceList, moduleName = “main”)

Variable Context Analysis

One of the challenges in extracting information from a NuSMV model file is de-

termining which variable is defined in what module and linking those definitions to

defined variables in other modules, such as the main. In NuSMV, attribute dot nota-

tion is used so that defined module variables can be referenced by defining a label for

the module instance and referencing the variable in the form module.variable. This

feature is additive in that a module instance object can be defined inside modules

such that a trail of dot notation can be used to define the context of the variable.

This feature is extensively used in counterexamples to reference the actual values of

variables declared in modules at a given state.

Example 4.2. In gigamax.smv the module “memory” defines the variable “master”

of type boolean. To reference master from main and find the value of master relative

to m, we declare a process m of type memory and reference m.master.
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To trace the definition location of a variable in a NuSMV program, methods are

required to analyse the modules variable and the string in the module variable dot

notation representing a variable, and recursively search for each declared variable

from the dot string until the module that originally defined it is found. Using the

module and variable name the domain can be returned. This is necessary to derive

domain information for counterexamples when building a local model. To handle

this contingency, the smvProgram contains a member function traceVariable which

can take a variable in dot notation and the module it is referenced in, (defaulting to

the main module) and derive the original module the variable is defined in.

An example of this can be seen in the gigamax cache coherance program. In the

main module there are five module declarations each with their own sub-variables

declared within the modules. However in the counterexample, variables are refer-

enced with their full module context, the full dot notation leading to the modules

variable declaration.

This causes problems as it does not give any information about the domain of

the variable in the counterexample. To solve this, a hash table mapping modules to

the variables it defines and their respective domains is created such that variables

can be traced back to the modules which created them to ascertain their type and

domain.

Example 4.3. In the NuSMV program gigamax.smv a variable “p0” of process type

“processor” is defined in the main module. Processor inherits from the module “bus-

device” which declares its own boolean variable “waiting”, indicating the modules

status. In the counterexample this variable would be represented with its valuation as

p0.waiting = 0 without a reference to its status as a boolean variable. To determine

the type of waiting, we pass the method traceVariable p0.waiting and main as the

module name. Referencing the variable hash table for main, p0 is found to be a

process type “processor” module. traceVariable recurses, applying the process to the

processor module. No reference is found to waiting in the variable hash table but

processor inherits from cache-device and bus-device. Applying the process to bus-

device we find waiting is of type boolean and its domain can be returned to the

calling function.
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4.2.3 Counterexample Parsing

When NuSMV returns from a model checking session it does so with the results of

verification of the model and gives verbose output describing the violation and data

pertinent to the checking session.

A returned counterexample will be a sequence of states listed with system vari-

ables assigned a valuation from its respective domain. Each state is assigned an

identifier kept in the header (e.g. for a root state ->State: 1.1<-), with variable

assignments trailing. In NuSMV each subsequent state after the initial, states are

followed with variable valuations only where changes have occurred in the transition

from the last state. This is a means of reducing the size of a counterexample, as it

is possible to see smv files defining hundreds of variables, each needing to be defined

with a valuation at a state.

For models defined with a process layer, inputs are defined with their own iden-

tifier and header. This describes the process selector variable which handles control

of processes based on behavioural constraints (such as process fairness, defined in

[15]). Counterexamples also report session information about the model checking

procedure, such as which properties it satisfied, type of trace, trace description,

system diameter and state reachability.

Further to this description, in the case that a counterexample trace is an in-

finite path, it will contain one or more indicators of where the loop begins (i.e.

- - loop starts here). This indicates that a transition occurs from the final state in

the counterexample to the state immediately following the loop delimiter, such that

the loop is created. A characterisation of general counterexample form can be seen,

such that we can parse generated counterexamples to determine if property specifi-

cations were found false. If so, build the counterexample into a tree-like structure

which can be updated based on the unsatisfied properties.

With these characterisations of counterexamples, it is easy to see that there are

challenges in building a parser for counterexamples. Firstly, labels from previous

states in a sequence need to migrate over to following states if no change occurs.

Further, we need to implement flags which indicate where SCCs exist and which state
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a final state in an SCC transitions back to. Domain data for variables and granular

details about the program being analysed are required to build the propositional

atom set for the local model update process. Finally, session details and session

meta-data better defining the violation can be collected and structured to give the

developer more information about the session4.

smvCounterexample Module

To address these points, the class smvCounterexample was designed with the purpose

of the lexical analysis and parsing of counterexamples into a program manageable

and human readable format. This class can be found in the smvCounterexample

module, of the pySMV package included in the l-Up suite.

Algorithm 4.3: smvCounterexample class definition.

01 :class smvCounterexample():
02 : def init (self, filePath, programPath, debug = 0):
03 : self.filename = filePath.split(“\\”)[−1]
04 : self.modules = {}# hash table
05 : self.smvProgObj, self.stateCount = smvProgram(programPath), 0
06 : def analyseCounterexample(self, rawFiles)
07 : def initialiseStates(self, rawStates)
08 : def initialiseTransitions(self, trans)
09 : def translateCounterexampleToModel(self)
10 : def reduceFormula(self, form, templateList)

smvCounterexample takes as a first argument the file path to the derived coun-

terexample, an smv program object to derive domain information from the model

specification file, any debug flags and builds a local model based on a returned coun-

terexample and the model specification file. As with the other created class objects

in the pySMV package, smvCounterexample uses smvTools to provide regular ex-

pressions for extracting counterexample information. The regular expressions are

applied based on smv syntax to extract the following metadata about a counterex-

ample: the filename and extension, property valuation from the checking session,

the trace description and type, program size and model state count. smvCounterex-

4Counterexamples from NuSMV sessions on the semaphore, gigamax cache coherance
protocol and sliding window protocol are given in Appendix B to demonstrate parsing and
update.
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ample also translates the counterexample into a local model format which is more

efficient and reduces the effects of time complexity. This will be discussed in the

following sections.

Parsing Labels

In order to determine a valuation of a variable at each state of the counterexample,

we need a method of carrying over a valuation from previous states, if a check is

necessary we can reference the applicable valuation by referencing the state. build-

State() has the duty of creating the label space for all states in the counterexample.

This is done by iterating over labels in the parsed counterexample file and carrying

over valuations on variables that have not changed. We can then assign states a new

variable valuation if changes have occurred since the last transition.

Algorithm 4.4: buildState(self, stateSet, delta = 0).

01 : def buildState(self, stateSet, delta = 0):
02 : varBases, keys, varBaseSave = {}, stateSet.keys(), {}
03 : keys.sort()
04 : self.initialState = keys[0]
05 : for state in keys:
06 : if delta: varBaseSave = {}
07 : for var in stateSet[state]:
08 : if delta:
09 : self.varBuild(var, stateSet[state][var].strip())
10 : else:
11 : varBaseSave = copy.deepcopy(self.varBuild(var, . . .
12 : . . . stateSet[state][var].strip()))
13 : varBases[state] = varBaseSave
14 : return varBases

The method varBuild() is utilised to create a hash table which maps variables to

their valuations for a given state, calling itself recursively if dot notation indicates

the module context of the variable belongs to nested modules. When a complete

hash table of the variables and valuations are created it is returned to buildState()

and mapped to the state.

This is an efficient method for structuring valuations on variables such that the
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correct module context is maintained for each variable, as many instances of the

same module can be called, each with an instance of a variable with the same name.

Dot notation maintains correct module context for these variables.

Algorithm 4.5: varBuild(self, variable, assign, varBase = {}).

01 : def varBuild(self, variable, assign, varBase = {}):
02 : if variable.find(‘.’) != -1:
03 : rside = variable[variable.find(‘.’)+1:len(variable)]
04 : lside = variable[0:variable.find(‘.’)]
05 : if lside not in varBase.keys():
06 : varBase[lside] = {}
07 : varBase[lside] = copy.deepcopy(self.varBuild(rside, . . .
08 : . . . assign, varBase[lside]))
09 : else:
10 : varBase[variable] = assign
11 : return varBase

Counterexample Regular Expressions

In smvCounterexample.py regular expressions are used in conjunction with the iso-

lateSections() method to break the counterexample into delineated sections to be

interpreted by seperate functions5. isolateSections takes as an argument a list of

regular expression headers and footers, which if encountered in the file, builds into

a list from the head and terminates the list if one of the footer regular expressions

is satisfied for the current line.

4.2.4 Variable Data Types and Valuations

In the previous chapter many details were removed to simplify the update algo-

rithm. This was to aid an understanding of the structure and semantics applied

in mapping an update to a model based on the temporal formula. These included

details regarding type handling, label representation and reduction of variables into

propositional atoms bound to a domain and given a truth value.

5Regular expressions and isolateSections() are kept in the helper module smvTool.py.
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Counterexample Header: ‘\*\*\* [\W\w]’
Process Input Header: ‘-> Input: ([\W\w]*) <-’
State Header: ‘-> State: ([\W\w]*) <-’
Specification ‘– specification ([\W\w]*) is ([\W\w]*)’
Trace Description Mode: ‘Trace Description: ([\W\w]*)’
Trace Type Field: ‘Trace Type: ([\W\w]*)’
Diameter Field: ‘system diameter: ([\W\w]*)’
Reachable State Field ‘reachable states: ([\W\w]*) out of ([\W\w]*)’
Variable Assignment Field: ‘([\W\w]*) = ([\W\w]*)’
Loop Sentinel Line: ‘– Loop starts here’

Figure 4.4: Regular expressions for counterexample extraction.

In NuSMV many types of variable can be declared, this is a method of syntax

sugaring the model specification process to ease the process of applying and defining

transitions based on variable valuations. This is in contrast to the theory of model

update which allows valuations to be placed on atomic propositional atoms through

a label function.

To solve this disconnection between theory and practice, we ground these com-

pound structures into their propositional atom equivalents and maintain a template

list of each grounded label which can be linked to a string of binary values mapped

to a state. We can find the value of a variable at a state by finding the index of the

mapped valuation and apply an interpretation based on the type of variable. In their

simplest form variables consist of three pieces of information, the label representing

the variable, the possible domain for the variable and the given current valuation

for the variable at that state. We will list in the following section how each data

type can be interpreted with each of these parts of variables in mind.

Boolean Type: The base case for variable representation. A boolean value can

be represented as a propositional atom where its valuation is a single bit in the

valuation string. The index for the label in the label template would match the

index in the valuation string.

Interval Type: An interval is a defined type given as an integer value with a

maximum and minimum bound6, e.g. months = 1 . . . 12; an interval can be given a

6As is well established in model checking literature combinations of domain size and
variable cardinality are causal agents towards the model explosion problem [46]. For this
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binary representation with a length based on its size (i.e. maximum minus minimum

value). Each element of the domain can be represented by some valuation to each

propositional atom.

Example 4.4. Months could be represented with 12 elements; 0-11. binary(11) =

length(1011) = 4 bits and the valuation months = 7 would be represented as a propo-

sitional formula months8 ∧ ¬months4 ∧ ¬months2 ∧ ¬months1
7, or the valuation

string 1000.

Word Type: A word can be seen as an array of size equal to the number of bits it

represents. Each bit can be referenced through an index. e.g. a word flags of size 5

could be represented with the valuation 10101 and flags[2] == 1.

Enumerable Type: Enumerable types can be treated in much of the same way

as an interval integer type. Each member of the domain can be enumerated such

that some valuation to a set of bits representing the domain derives a valuation;

e.g. the enumerated variable week = {mon, tue, wed, thurs, fri, sat, sun} can be

represented with 3 bits (7 elements, 3 bits gives 23 possible bit combinations) and

the valuation at the state week = fri is 100, or week4 ∧ ¬week2 ∧ ¬week1.

Array Type: Array types can be treated as a multiplied version of the other types.

Each array when defined is given an interval value defining valid indices for the array

and the associated type to the array, including it being able to be defined as an array

of type array (for multi-dimensional array types).

The defined size of the array multiplies against the number of bits required

to represent a variable of the given type at an index; e.g. The valuation of the

array 0..2 of scores: 0..5 would be representable with 3 × 6 = 18 bits, and the

valuations scores[0] = 4, scores[1] = 2, scores[2] = 0 is representable with the

string 100010000, or the propositional formula scores0,1 ∧¬scores0,2 ∧¬scores0,4 ∧

¬scores1,1 ∧ scores1,2 ∧ ¬scores1,4 ∧ ¬scores2,1 ∧ ¬scores2,2 ∧ ¬scores2,4.

These conventions have the following effects on the update process. For the algo-

rithm to determine which bit to apply the propositional atom to we need to ground

reason all integers defined in NuSMV require that an upper and lower bound be defined to
increase model tractability and reduce the model size.

7As 0 is not an allowed valuation representation begins at 1, thus months = 1 is repre-
sented as ¬months8 ∧ ¬months4 ∧ ¬months2 ∧ ¬months1.
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the compound propositions in the ACTL formula such that it can be interpreted by

the local model update algorithm and effect an appropriate modification. We will

give an example of this and the representation of the label set at an initial state in

Example 4.5. Also a case exists where a proposition is required to not be true at a

state. This equates to some other value from the domain be true for the variable in

question and the original valuation be untrue. Following this persistence checking

needs to occur to be certain another property was not violated.

Example 4.5. Applying the reduction of variables to propositional atoms in this

section, we use the gigamax.smv program in Appendix B, such that it can be inter-

preted by the l-Up framework. By analysing the main we can see that the program

defines an enumerable type CMD with 9 elements passed to each module, and the

4 processes p0, p1, p2 and m. p0, p1 and p2 are defined as processors and inherit

behaviour from bus-device and cache-device. These modules define the enumerable

type variables state, snoop and cmd, and the boolean variables master, waiting and

reply-stall. m is an instantiation of memory, which defines the boolean types mas-

ter, busy and reply-stall, and the enumerable type cmd. Using the process detailed

previously we reduce this variable to its corresponding set of atomic propositions.

An enumerable type with 9 elements can be represented with 4 bits, boolean values

with 1 bit and enumerable types with 3 elements can be represented with 2 bits. In

total with each variable represented in each module each state can be represented

using 4 + (3 × (3 + 4 + 4)) + (3 + 4) = 44 bits8. Using the order given in the

main, CMD would represent v[0]-v[3], p0 represents v[4]-v[14], p1 v[15]-v[25], p2

v[26]-v[36], and m v[37]-v[43].

The list of propositional atoms for this program are AP = {CMD1, CMD2,

CMD4, CMD8, p0.master, p0.waiting, p0.reply-stall, p0.cmd1, p0.cmd2, p0.cmd4,

p0.cmd8, p0.state1, p0.state2, p0.snoop1, p0.snoop2, p1.master, p1.waiting,

p1.reply-stall, p1.cmd1, p1.cmd2, p1.cmd4, p1.cmd8, p1.state1, p1.state2, p1.snoop1,

p1.snoop2, p2.master, p2.waiting, p2.reply-stall, p2.cmd1, p2.cmd2, p2.cmd4,

p2.cmd8, p2.state1, p2.state2, p2.snoop1, p2.snoop2, m.master, m.busy, m.reply-

stall, m.cmd1, m.cmd2, m.cmd4, m.cmd8}.

8Not all of these states are reachable and using local models reduces the space of states
further. Regularly, a 44-bit string could represent 1.7× 1013 unique states.
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4.2.5 ACTL Formula Reduction

As each variable declared in the NuSMV program and counterexample will be kept

in a label template in a reduced propositional form, we need to correspondingly

transform the propositional statements in the ACTL properties before the update

search procedure to ease processing time. We replace each compound variable type

with its propositional formula representation given above.

Example 4.6. In the main module of the previously referenced gigamax program the

property AG!(p0.writable & p1.writable) is expressed to stop two processors from

writing to a cache simultaneously in any state of the program. With the list of

propositional atoms defined in Example 4.5, the propositional formulas defined in

the cache-device module for writable (writable := (state = shared) & !waiting) and

equivalences, we remove the program syntax sugaring and get the parsable formula

AG((¬(p0.state = shared)∨p0.waiting)∨(¬(p1.state = shared)∨p1.waiting)). We

then reduce the formula further to valuation indices for each state to get the formula

AG(¬11 ∨ 12 ∨ 5 ∨ ¬22 ∨ 23 ∨ 16),

where 11 represents the atom p0.state1, 12 p0.state2, 5 p0.waiting, 22 p1.state1, 23

p1.state2, and 16 p1.waiting.

Example 4.7. To give an example of counterexample parsing we modify the giga-

max.smv program to cause the system to violate the ACTL formula

AG(¬(p0.writable ∧ p1.writable)). To do this we have to have the two processors

be in a state allowing both to write to a cache. On line 14 of the bus-device mod-

ule of gigamax.smv we set waiting to FALSE if master is true and CMD is in a

read-owned state. Passing this to NuSMV we receive a five state finite path coun-

terexample explaining the violation, given in Figure 3 of Appendix B. Returning

the counterexample location to an instantiation of smvCounterexample, initially it

parses lines pertaining to the specification and the satisfaction of it in the model.

If unsatisfied, it extracts the block of text beginning with the initial state and ter-

minated by another counterexample declaration or the system diameter and reachable

states footer. Regular expression grouping fields (i.e. ([\W\w]*)) assist in extract-

ing the state labels and count (in use of initialiseStates() and initialiseTransitions()
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methods). Having extracted variables, labels are iterated over and types are found

for each label from their respective module.

The resulting local model is described in the Kripke structure M below, where

propositional atoms satisfied at the state are present and unsatisfied atoms are not

present as a means of space saving. For the list of Atomic Propositions for this

program we refer the reader to Example 4.5.

S = {s1, s2, s3, s4, s5}, T = {(s1, s2), (s2, s3), (s3, s4), (s4, s5)},

L(s1) ={CMD1, p0.cmd1, p0.master},

L(s2) ={CMD8, p0.waiting, p0.state2, m.master, m.cmd8, m.busy, p1.cmd1,

REPLY -WAITING, p0.reply-waiting},

L(s3) ={CMD1, p1.master, p1.cmd1, p0.writable, p0.readable, p0.state1},

L(s4) ={CMD8, p1.waiting, p1.state2, m.master, m.busy, p1.reply-waiting,

REPLY -WAITING, m.cmd8, p0.writable, p0.readable, p0.state1},

L(s5) ={CMD1, p2.master, p2.cmd2, p1.writable, p1.readable, p1.waiting,

p1.state2, p0.writable, p0.readable, p0.state1}.

4.3 pyFormula Package

The pyFormula package for l-Up was created for the purpose of having a stand

alone package which could lexically analyse strings into structured tokens and parse

formulae in universal computational tree logic. We can then reduce these formu-

lae using known equivalence rules such that they can be used in the local model

update algorithms. This has resulted in the creation of three modules central to

pyFormula: ACTLOps.py for defining ACTL tokens and equivalence rules, ACTL-

FormulaParser.py for prototype ACTL formula parsing and evalOperators.py for

definition of action tokens used later in constraint automata compliance. In all, this

package contains 1078 lines.

To begin, we will look at ACTL token definition and briefly look at the ACTL

parser. Further in this chapter we discuss action tokens.
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4.3.1 ACTL Tokens

In the Python language all structures are treated as an object. For this reason

we design ACTL formula tokens in an objective way such that classes of formula

tokens are clearly defined for parsing. This includes making formula tokens uniquely

identifiable, contain the correct amount of arguments and ideally, presentable in a

fashion which represents correctly the formula in a string format. As a precondition

to update semantics being applied to the model, the property formula must be

passed as a well formed formula string by the user. An example of a not well formed

formula is the property φ ≡ AF(a U b). This is not well formed because the universal

quantifier is not defined for the innermost temporal operation. The correct way to

define this is φ ≡ AF(A(a U b)).

In the ACTLOps.py module we define formula tokens as a class of operations

Op, inheriting from Python lists and may take an undefined amount of arguments

(n-ary).

class Op(List): class AG(Op):
def init (self, args): def str (self):

super(Op, self). init (args) return ‘AG(%s)’ % tuple(self)

Figure 4.5: Type definitions for ACTL Formula Tokens.

In this definition Op inherits from the List type and begins by applying the

initialisation of its super class, List. To define ACTL tokens from the Backus-Naur

Form in chapter 2 we have each token derive from the super class Op and apply an

ary count such that they accept a specific argument count and throw an exception

if the wrong amount of arguments are passed. An example of this is the AG token.

We define a new class AG which is unary. The str method is defined such that

if the class object is treated as a string or is passed to standard output it will print

its token type (i.e. “AG”), parentheses to establish its scope, then call the string

method of its first argument, be it another formula token or an atomic proposition.

Another similar case is the binary operation disjunction, or ∨. In this case

it again inherits from Op but its str method returns both of its arguments,
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surrounded by parentheses and seperated by a dash, allowing a text representation

for disjunction.

class Or(Op): class AU(Op):
def str (self): def str (self):
return ‘(% s) | (% s)’ % tuple(self) return ‘AU(%s U %s)’ % tuple(self)

Figure 4.6: Type definition for binary ACTL formula tokens.

This representation of ACTL formulas allows the nesting of ACTL formulas to

create the required tree structure inherent in formulas where atomic propositions are

leaves. Methods for modifying ACTL formulas or deriving information pertaining

to a formula are kept in the ACTLops.py module in the formulaeOperators pack-

age of the l-Up software suite. This includes means of performing transformations

into disjunctive or conjunctive normal form, removal of double negatives, apply-

ing de Morgans laws, identification of specific formula tokens and proper formula

formatting.

4.3.2 ACTLFormulaParser

Included in this package is the ACTLFormulaParser.py module which uses lex and

yacc to take a string representing an ACTL formula, perform lexical analysis to

identify ACTL tokens and parse the formula into a structure usable by the up-

date algorithm. ACTLFormulaParser defines ACTL parsing rules in Backus-Naur

Form, identifies parsing patterns and applies the appropriate rule to generate the

nested token structure shown in the previous subsection. A formula string can be

parsed by creating an instance of class actlFormulaParser and calling the method

stackACTLFormula() with the formula string and any debugging flags.

It should be stressed that ACTLFormulaParser.py is a prototype and, while

working for many classes of ACTL formulas it does not guarantee an automatic

precedence of tokens. The author recommends using parentheses to force precedence

in parsing to get the desired semantic effect.
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4.4 pyModel Package

The central package to the l-Up environment is the pyModel package, containing

modules which enact the algorithms described in Chapter 3 and contains approxi-

mately 3300 lines of code. Central to the pyModel Package is the Model module,

containing the Model class which enacts update with Updatec(). The Model class in-

herits from the Kripke class defined earlier in the Kripke module. In this way Model

can perform all of the model-like operations of Kripke but abstract away many of

the details inherent in creating the Kripke structure such as transition structure and

state labelling. The Model class can be seen as an abstraction layer on which update

can occur.

Algorithm 4.6: Model constructor.

class model(self):
01 : def init (self, model, init):
02 : self.states = model.states
03 : self.init = state(“”)
04 : self.transitions = model.transitions
05 : self.destTransitions = model.destTransitions
06 : self.SCCs, self.treeDepthDict = {}, {}
07 : self.rollBackStep, self.skipFlag= [], False
08 : def updateApply(self, updates)
09 : def update(self, s, formula, debug = 0)
10 : def updateProp(self, s, formula, debug = 0)
11 : def updateConjNested(self, s, formula, debug = 0)
12 : def updateDisjNested(self, s, formula, debug = 0)
13 : def updateLabelAX(self, s, formula, debug = 0)
14 : def updateLabelAF(self, s, formula, debug = 0)
15 : def updateLabelAU(self, s, formula, debug = 0)

4.4.1 Kripke Module

The Kripke class is defined to represent a Kripke structure and encapsulate the

required methods which can be applied to the embedded transition structure, states

and labels. An object of type Kripke allows manipulation of the structure, access

to private attributes, and general Kripke structure internal attribute queries.

The Kripke Class allows two methods of accepting input. The simpler represen-
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tation mimics the notation used for the simpler examples presented in this thesis, i.e.

a set of states labelled with propositional atoms done so with a labelling function,

and a set of tuples mapping the transition of one state to another. Beyond this,

update can also be performed on SMV models reduced using the process discussed

in the previous section of the chapter. Model checking can be applied to simple

Kripke structures described in the examples provided earlier.

Example 4.8. Entering a simple Kripke Structure M = (S,R,L), where S =

{s1, s2, s3, s4}, R = {(s1, s2), (s2, s3), (s3, s3), (s3, s4), (s4, s4)} and L(s1) = {a, b, c},

L(s2) = {h, g, i}, L(s3) = {m}, L(s4) = {a}, for testing purposes in the Kripke

class, can be represented as

S = {s1 : a; b; c, s2 : h; g; i, s3 : m, s4 : a}

R = {s1 : s2, s2 : s3, s3 : s3; s4, s4 : s4}

Kripke Structure Representation

In Python many data structures come included as standard when the Python inter-

preter is installed. In this implementation we use the dictionary hash tables type to

store model states as indices to the dictionary and have each index refer to a string

of atomic label valuations associated to the given state. This has the benefit of O(1)

access time for state label valuations and supports dynamic insertion and deletion of

states and valuations. States are represented as their own class inheriting from the

object class, each with an associated label and depth in the counterexample model.

Labels in l-Up are represented as arrays of boolean types using the NumPy package

of Python for implementing each states array of boolean valuations.

Example 4.9. The initial state s0 of some Kripke structure M has the label func-

tion L(s0) = {¬i, j,¬k} where AP = {i, j, k}. In the Kripke instantiation this is

represented in the set of states self.states = {s0 : [False, T rue, False]} where the

valuation of j can be accessed through self.states[s0][1], evaluating to True.

In the implementation, relations between states are kept as two-way adjacency

lists, implemented as hash tables mapping states to the states they transition to

and a secondary destination table which maps the transitioned state back to its
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origin (i.e. if (si, sj) ∈ R, (sj , si) ∈ Rdest). This allows backwards traversal through

the tree-like model which is used for SCC detection and models which contain in-

valid transition structures. This method of representing relations was chosen over

adjacency matrices as the corresponding transition structure for local models is a

directed tree-like graph, and in general adjacency lists are more efficient for struc-

tures with lower relation saturation (where maximum saturation is S2 for structures

allowing loops).

With the structures defined, manipulations to the represented model can be

done through a library of methods defined in the Kripke class. These methods

enact modifications defined by the types of update tuples, including addition or

removal of labels, states and relations. Further, the methods allow queries on the

state of the model and structural details of the transition system and state. This

also includes identification of SCCs and path traversal, which we will analyse in the

following sections.

4.4.2 Strongly Connected Component Indexing

A special case for consideration in model structure is Strongly Connected Compo-

nents (SCCs) defined in Chapter 2, Definition 2.4. SCCs constitute infinite paths in

tree-like structures and require indication in the system algorithm such that when

states are traversed the initial entry state, member states of the cycle, and paths

leading from the SCC are identified. This is done primarily for satisfying temporal

properties whose semantics require future satisfaction (i.e. AF, AU).

To address this challenge we apply a method of SCC indexing for tree-like models

such that SSC states can be parsed, traversed and paths outwardly transitioning

from the SCC can be identified. In this way, when a state in the model is found

to be in the SCC path, for formulas whose semantics require satisfaction in infinite

paths, operations can be applied for SCC cases and if necessary, its states in the

SCC which have relations to other states not in the SCC paths can be operated

upon.

For this purpose in implementation we design a class SCC, which is described by



4.4. pyModel Package 125

the initial state of the SCC, the list of states in the SCC, the dictionary of relations

describing the cyclic path, and a dictionary describing any paths coming from SCC

states. SCC also defines methods allowing path search of states in the SCC and

related functionality.

Algorithm 4.7: SCC constructor.

class SCC():
01 : def init (self, entry, states = {}, sccTransitions = {},

outTransitions = {}):
02 : self.states, self.sccTransitions = states, sccTransitions
03 : self.outTransitions, self.entryPoint = outTransitions, entry
04 : def retEntryArm(self)
05 : def findHandle(self, s)
06 : def inSCC(self, node)
07 : def traverseSCC(self, initial)
08 : def testSCCBranch(self, state, initNode)
09 : def retLastState(self)
10 : def retOutwardTrans(self)

Indexing SCCs

To ease computational costs associated with determining membership of a state to

an SCC, SCCs are indexed prior to the update process. In this way states can be

identified as being members of the set of states of the SCC in near constant time

and each SCC can be treated as a path such that appropriate update semantics can

be applied in regards to infinite paths.

Finding which states occur within an SCC is a case of searching the state space

for state s, which has two relations in the set of transitions such for some sx and

sy, {s, sx, sy|(sx, s), (sy, x) ∈ R ∧ s 6= sx ∧ s 6= sy} (i.e. the state has two states

transitioning to the state and neither are itself.). Having found such a state, we

backwards traverse the path created by each of the states two incoming relations

and determine which describes the cyclic path and which describes the path leading

back to the root state (lines 4 and 5 )9. Having determined which is the cyclic path

9as tree-like models are directed graphs, backwards searching through paths will in-
evitably lead to the initial state.



4.4. pyModel Package 126

Algorithm 4.8: indexSCCs().

def indexSCCs():
01 : for s in states:
02 : if hasOrigin(s):
03 : if len(destTransitions[s]) == 2 and not isSelfLoop(s):
04 : branchA = testSCCBranch(destTransitions[s][0], s)
05 : branchB = testSCCBranch(destTransitions[s][1], s)
06 : if branchA and branchB:
07 : return False
08 : elif branchA and not branchB:
09 : sccTrans, outwardTrans = . . .
10 : . . . retSCCStates(s, destTransitions[s][0])
11 : elif not branchA and branchB:
12 : sccTrans, outwardTrans = . . .
13 : . . . retSCCStates(s, destTransitions[s][1])
14 : else:

15 : return False
16 : SCCs[s] = scc(s, sccTrans.keys(), sccTrans, outwardTrans)

we iterate through the path, returning hash tables describing the cycle and paths

descending from SCC states (lines 9 and 11.). Finally, each found SCC is mapped

to its unique initial entry state into the hash table SCCs (line 14 ).

Algorithm 4.9: testSCCBranch(s, initState).

def testSCCBranch(s, initState):
01 : while s != initState:
02 : if not hasSuccessor(s):
03 : return False #found initial state
04 : else:
05 : if hasOrigin(s):
06 : if predecessorCount(s) == 2 and s != initState:
07 : return False
08 : s = destTransitions[s][0]
09 : else:
10 : return False
11 : return True
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testSCCBranch(): testSCCBranch() is a method called by indexSCCs() to deter-

mine if a path found describes a cyclic SCC path, a path descended from the root, or

an invalid path. testSCCBranch() performs a linear search until it finds the initial

state of the cycle (line 1 ), determines the current state is the initial (line 2 ) or it

finds another SCC entry state, indicating it is an invalid path or a path leading to

the initial state (line 3 ). If none of these conditions are met and the initial SCC

state is found the path taken describes the cyclic path and the method returns true

(line 11 ).

Algorithm 4.10: retSCCStates(entry, armNode).

def retSCCStates(entry, armNode):
01 : sccTrans, outWardTrans = {}, {}
02 : next, sccTrans[armNode], last = entry, [entry], armNode
03 : while entry != armNode:
04 : if successorCount(armNode) > 1:
05 : for branch in transitions[armNode]:
06 : if branch != next:
07 : outWardTrans = . . .
08 : . . . appendToDict(outWardTrans, armNode, branch)
09 : next, armNode = armNode, destTransitions[armNode][0]
10 : sccTrans[armNode], last = [last], armNode
11 : return sccTrans, outWardTrans

retSCCStates(): Having found the path which describes the cyclic path of the

SCC (entry, armNode), we iterate through states and build a hash table adjacency

list describing the path and any other paths with originate from SCC states (line 7 ).

This process then returns, giving hash tables describing the cycle and SCC paths

(line 10 ).

Having indexed SCCs present in a tree-like local model we can determine cycle

membership for a state in time O(1).
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4.4.3 Path Traversal

For checking satisfaction of paths in universal computational tree logic, depth first

traversal is ideal for explicit state models, as it allows individual states along a path

to be iteratively searched and checked for satisfaction, such that we can determine

where the violation of some specification occurs. Time complexity is well established

for depth first traversal, in worst case O(|V |+ |E|) with no state repetition.

Algorithm 4.11: modelTraverse(M, s, φ).

class modelTraverse():
01 : def init (self, M , init):
02 : self.states = M .states
03 : self.transitions = M .transitions
04 : self.destTransitions = M .destTransitions
05 : self.SCCs = M .SCCs
06 : self.currState, self.toVisit = init, []
07 : self.rollBackStep, self.skipFlag= [], False
08 : self.treeDepthDict = M .treeDepthDict
09 : def next(self)
10 : def updateDepthBit(self)
11 : def skip(self)
12 : def retDepthBit(self)
13 : def retNonSelfTransition(self)
14 : def retNonArmOrigin(self)
15 : def retSCC(self)
16 : def retNonLoopStates(self)
17 : def retAllButGiven(self)

Knowing this, class objects can be created which take reference to a local model

and the initial state and methods which return references to states transitioning

from previous given states can be employed. We establish satisfaction of temporal

formulas over paths in an iterative manner for both propositional and universal

temporal formulas. Methods are included with the traversal object which allows

iteration over states, iterative returning of states for processing, the ability to skip

branches if satisfaction has been maintained for the path, and the ability to backtrack

through states if necessary.
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Path traversal in l-Up takes into account the structural considerations of tree-

like models such as branching transitions from single states, state self loops and

Strongly Connected Components in Kripke structures. Two methods which are key

to the traversal process are next() and skip().

Algorithm 4.12: next().

def next(self) :
01 : s = self.currState
02 : if self.skipFlag:
03 : self.skipFlag = False
04 : return s
05 : self.updateDepthBit()
06 : if self.inSCC(s):
07 : scc = self.retSCC(s)
08 : if s in scc.outTransitions.keys():
09 : self.toVisit.append(scc.transitions[s][0])
10 : self.currState = scc.outTransitions[s][0]
11 : elif scc.sccTransitions[s][0] != scc.entryPoint:
12 : self.currState = scc.sccTransitions[s][0]
13 : elif self.toVisit:
14 : self.currState = self.toVisit.pop()
15 : else:
16 : raise StopIteration
17 : elif self.hasSuccessor(s):
18 : if self.isSelfLoop(s):
19 : self.toVisit.extend(self.retNonLoopStates(s))
20 : if self.toVisit:
21 : self.currState = self.toVisit.pop()
22 : else:
23 : raise StopIteration
24 : else:
25 : self.toVisit.extend(self.transitions[s])
26 : self.currState = self.toVisit.pop()
27 : elif self.toVisit:
28 : self.currState = self.toVisit.pop()
29 : else:
30 : raise StopIteration
31 : return s
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next() - next() returns the reference to a state transitioning from the last state

passed as an argument from the traversal object, or a previously unvisited state

if every state in the previous branch was visited. This method always returns a

unique state in the model, if the last state reference passed was a leaf, this method

returns a reference to a state from an untraversed branch last encountered or throws

a StopIteration exception, indicating the last state in the sub-tree has been traversed

and the search space is exhausted (line 30 ). Similarly, if a SCC is traversed when

the last state leading back to the first cycle state is reached, it is treated like the leaf

case. Finally, next() also maintains the depth attribute of states as it traverses the

model, by modifying the depth bit value relative to its immediate ancestor (line 5 ).

Algorithm 4.13: skip().

def skip(self) :
01 : if self.toVisit:
02 : self.skipFlag = True
03 : self.currState = self.toVisit.pop()
04 : else:
05 : raise StopIteration

skip() - skip() raises a bit flag in the traversal object such that when the next()

method is again called the following referred state is the beginning of an unchecked

path. This method is used in the case where satisfaction of the current path has

been established and further path traversal is unnecessary, thus skipping the current

path and beginning another. Using the methods next() and skip() we can perform

all required traversal over paths of a local model to ascertain the satisfaction of some

formula token by a model path.

Depth Analysis

In update, state depth is used to determine if an applied set of minimal modifications

is smaller than some other set of modifications is. In this way we need to maintain

a map of depths of each state by initially traversing the local model and mapping

the depth of each state relative to the root.

To initially generate the map of depths to states we use the structure traversal

object defined in the previous section. Here we iterate through each state using

retDepthBit() to find the depth. retDepthBit() takes into account factors involving
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Algorithm 4.14: buildTreeDepthDict(self, init).

def buildTreeDepthDict(self, init) :
01 : travObj = modelTraverse(self, init)
02 : try:
03 : while True:
04 : s = travObj.next()
05 : self.treeDepthDict[s.name] = self.retDepthBit(s)
06 : if s.name not in self.treeDepthDict.keys():
07 : self.treeDepthDict[s.name] = s.depth
08 : except StopIteration:

tree-like structures and updates the hash table if a depth cannot be found. This

includes checking for SCCs as depth does not apply to SCC states. This method

also handles cases where the state is a leaf or has a self referencing relation. This

process is handled in the Kripke structure module (kripke.py).

Algorithm 4.15: retDepthBit(self, s).

def retDepthBit(self, s) :
01 : if s in self.treeDepthDict.keys():
02 : return self.treeDepthDict[s]
03 : elif self.inSCC(s):
04 : if self.retSCC(s).entryPoint == s:
05 : if self.predecessorCount(s) == 2:
06 : return self.retDepthBit(self.retNonArmOrigin(s)) + 1
07 : return self.retDepthBit(self.retSCC(s).entryPoint)
08 : elif self.hasOrigin(s):
09 : if self.isSelfLoop(s):
10 : return self.retDepthBit(self.retNonSelfTransition(s)) + 1
11 : return self.retDepthBit(self.destTransitions[s][0]) + 1
12 : else:
13 : return 0

After update, state depth must be refreshed for states, as modification may

change a states depth relative to the root. This can be done by rebuilding the depth

dictionary using the previous function.
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4.5 pyAutomata

In l-Up, we have designed modules for the handling of variable and action constraints

in update. These modules are bundled in the pyAutomata package to be referenced

for constraint use. Using these methods and structures we can gear our updates

towards modifications which comply to constraints and satisfy given ACTL property

formulas, as described in Section 3.3 of Chapter 3. For this task we created the

pyAutomata package for constraint automata compliance.

In implementation, automata need to be manually created by the developer for

the local model in this iteration of l-Up. Automata files can be specified in the

following manner, described in Figure 4.7.

01 : VAR AUTOMATA test1 01 : ACT AUTOMATA test2

02 : S={s0: i=1; t=1, · · · 02 : S={s1: Query(Equals(‘left’, 1)),
s1: i=2; t=1, sv: *} s2: Query(Equals(‘right’, 1)),

sv: Star()}
03 : F={s0, s1}

03 : F={s1, s2}
04 : R={s0 → s1:

· · · Assign(‘i’, Add(‘t’, 1)); 04 : R={s1 -> s2: ‘precedes’;
s0 -> s0: Query(Gt(‘i’,0)); s1 -> sv: ‘next’;‘exclusive’;
s0 -> sv: Query(Lt(‘i’,0)); s2 -> sv: ‘precedes’;
s1 -> s1: Query(Gt(‘i’, 0)); ‘exclusive’;‘next’}
s1 -> sv: Query(Lt(‘i’,0));
sv -> sv: Star()} 05 : V={left: bool, right: bool}

05 : V={t = 0..2: interval,
i = 0..2: interval}

Figure 4.7: Example variable and action constraint automata definitions.

This approach to constraint automata is based around the parsing of actions in

these automata. In the following section we give an insight into how actions are

identified and parsed.



4.5. pyAutomata 133

4.5.1 Actions

In this implementation actions are defined as nested tokens representing behaviour

between state labels. To determine if the labels mapped to some pair of states possi-

bly corresponds to an action in an automaton, an action formula from an automaton

is recursively broken down. Right variables (variables occurring to the right of an

assignment) and propositions in the action are replaced with their value at the first

state and the result of the action is compared against the variable values at the sec-

ond state. In this way we can say the difference between the state labels, described

by the state transition, corresponds to the described action in the automata. We

say that the difference between labels at two states implies a specific action.

Our framework system allows the definition of the assignment token operator

(:=), basic arithmetic tokens (+, −, /, ∗, <, >), logical tokens (and, or, not,

TRUE, FALSE ) and the query symbol (?). We refer the reader to Example 4.10 for

a demonstration of action tokens in use and action compliance in state transition.

Example 4.10. Suppose the transition between two states describes the assignment

of some interval variable i the value from another interval value j plus 1. This

could be represented as Assign(i, Add(j, 1)). Suppose there exist two states, sk and

sl which describe valuations placed on the two variables i and j described previously.

sk describes the valuations of i = 3 and j = 6, whereas sl describes the valuations

i = 7 and j = 6. Replacing the variables which are being referenced for their value,

we get Assign(i, Add(6, 1)), the formula is then recursively broken down and based

on the semantics of each operation it is found that the second state holds the correct

values.

For a further example of allowable constraint actions see Case Study 3 in the fol-

lowing chapter. Next, we define the structures for representing constraint automata

in the software package.
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4.5.2 Variable and Action Constraint Automata

We define a class of variable automata designed to represent the theoretical construct

described in Section 2.5 of Chapter 2 for constraint automata. As seen with local

models, states are kept in a hash table with each state mapping to a set of labels

corresponding to some state in a local model. Automata transitions are defined

as adjacency lists with hash tables containing lists of values. Associated actions

are represented as transition tuples mapping to a list of actions connecting the

two states. An example would be the transition (s1, s2) mapping to the action

Assign(i, 2). We declare final states as a list and the violation, initial and current

state as instances of states. Methods from lines 6 - 10 are involved in generating the

automata from file specification, and lines 11 and 12 are used to determine when

the current automata state can transition based on a passed action.

Algorithm 4.16: Variable automata object class.

01 : class varAutomata:
02 : self.states, self.transitions = {}, {}
03 : self.destTransitions, self.actions, self.labels = {}, {}, {}
04 : self.savedBranch, self.branchCount, self.final = [], [], []
05 : self.violation, self.initial, self.current = “”, “”, “”
06 : def readModelFromFile(self, path)
07 : def interpretVarAutomataLine(self, line)
08 : def buildState(self, line)
09 : def buildTransition(self, line)
10 : def buildVariable(self, line)
11 : def transitionAuto(self, source, dest, model)
12 : def checkSat(self, model, state2, formula)

The object design for action constraint automata is similar, however states are

labelled with actions occurring between states and transitions are labelled with input

action constraint symbols. Actions occurring in an action automata state can be

mapped to actions occurring in a local model between states. Methods are given in

actAutomata which build the action constraint and determine compliance to actions

in local models.
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Algorithm 4.17: Action automata object class.

01 : class actAutomata:
02 : self.actions, self.variableType, self.labels = {}, {}, {}
03 : self.variableDom, self.states self.transitions = {}, {}, {}
04 : self.destTransitions = {}
05 : self.violation, self.initial, self.current = “”, “”, “”
06 : def readModelFromFile(self, path)
07 : def buildState(self, line)
08 : def buildTransition(self, line)
09 : def buildVariable(self, line)
10 : def transitionAuto(self, source, dest, model)
11 : def checkSat(self, model, state2, formula)
12 : def nextSat(self, s, act1, act2)
13 : def futureSat(self, s, act, automataObj)
14 : def pastSat(self, s, act, automata)

4.5.3 Constraint Compliance

Based on the type of automata generated, different semantics are applied to de-

termine if a local model complies to a constraint automata. Variable constraint

automata require the compliance to rules describing values applied to variables in

a model and the interaction between different variables. Action constraints enforce

specific ordering on actions such that we can better control how interacting processes

behave.

We noted earlier that the framework does not explicitly take into account actions

between states; to approximate this we determine the difference between the labels

of two states in a local model and check it against the necessary action formula.

This is performed in the algorithm checkSat. We also need a method of checking

the value of some variable in a constraint automata action as a base case for action

compliance between states.

variableLookup: To be compatible with NuSMV types, many variable types can

be represented in constraint automata. The base case for action compliance requires

that we can find the value of a variable at a state from its state labels, such that

we can compare valuations at states in a local model. variableLookup returns the
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value of the variable at a state using its domain and type in the pySMV module

smvProgram to find the value. This method can be used by method checkSat to

apply action semantics using variable state valuations at a state.

Algorithm 4.18: checkSat(self, M , s1, s2, φa).

01 : def checkSat(self, M , s1, s2, φa):
02 : if φa == v:
03 : return variableLookup(M , s1, φa)
04 : elif φa == Assign: #arg1 := arg2
05 : return variableLookup(M , s2, φa1) == φa2
06 : elif φa == True: return True
07 : elif φa == False: return False
08 : elif φa == Not: return not self.checkSat(M , s1, s2, φa2)
09 : elif φa == And:
10 : return self.checkSat(M , s1, s2, φa1)

· · · and self.checkSat(M , s1, s2, φa2)
11 : elif φa == Or:
12 : return self.checkSat(M , s1, s2, φa1)

· · · or self.checkSat(M , s1, s2, φa2)
13 : elif φa == Eq:
14 : return self.satEq(M , s1, s2, φa1, φa2)
15 : elif φa == lt:
16 : return self.checkSat(M , s1, s2, φa1)

· · · < self.checkSat(M , s1, s2, φa2)
17 : elif φa == GtEq:
18 : return self.checkSat(M , s1, s2, Not(Lt(φa1, φa2)))
19 : elif φa == Add:
20 : return self.checkSat(M , s1, s2, φa1)

· · · + self.checkSat(M , s1, s2, φa2)
21 : elif φa == Sub:
22 : return self.checkSat(M , s1, s2, φa1)

· · · - self.checkSat(M , s1, s2, φa2)

checkSat: To determine if two states in a local model imply an action described in

the variable or action automata, we parse an action at an automata state and check

the label functions of two given states. If the difference in label functions between

the two states corresponds to the parsed value, we return a signal indicating the

difference implies the action. checkSat is a recursive method, it begins from the

root of the action formula and recursively calls itself, resolving the semantics of each

operation based on values passed for a variable at a given state in the local model.

Actions handled in checkSat are discussed in Subsection 4.5.1.
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Variable Constraint Compliance

For variable automata, compliance involves identifying states in the local model

which correspond to states in the variable automata through labels, as described in

Definition 2.9. The algorithm used in this implementation is variableCompliance(M ,

V C, sm, si) presented in Algorithm 4.19.

Algorithm 4.19: variableCompliance(M , VC, sm, si).

01 : def variableCompliance(M , VC, sm, si):
02 : varStack = []
03 : try:
04 : travObj = modelTraversal(M, sm)
05 : while True:
06 : snew = travObj.next()
07 : if len(M , transitions[sm]) > 1:
08 : varStack.append(sa)
09 : for sanew in VC.transitions[sa] :
10 : if checkSat(M , sm, snew, VC.actions[sa, sanew]):
11 : VC.transitionAuto(sanew)
12 : if sanew == sv:
13 : return False, sm, snew, sanew
14 : if M .isLeaf(snew) and sanew not in VC.final:
15 : return False, sm, snew, sanew
16 : elif M .isLeaf(snew) and varStack:
17 : sa = varStack.pop()
18 : if M .isSelfLoop(snew):
19 : if not isPath(VC, sanew, actList[snew]):
20 : return False, sm, snew, sanew
21 : if M .isSCCstate(snew):
22 : if not isPath(VC, sanew, · · ·

actList(SCC[snew].transitions.keys())) · · ·
or vPath(VC, sanew, actList):

23 : return False, sm, snew, sanew
24 : sm = snew
25 : except StopIteration:
26 : del travObj
27 : return True

Starting from the initial state of the local model and initial state of the variable

automata, a depth-first traversal of the local model is performed. For each transition
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in the local model, we use checkSat to determine which state in the variable automata

to transition to, based on available relations (line 08 ). If the automata transitions

to the violation trap state, we can say the local model does not comply to the

constraint automata (line 10 ). If a leaf state is reached in the local model (i.e. no

other existing relations), the current state of the variable automata has to be a final

state. If not, the local model does not comply to the variable constraint automata.

If a leaf state is final and visited in a local model, we check a previously unchecked

local model branch and jump back to the state in the automata which corresponded

to a previously unchecked state.

There also exists the case for cyclic behaviour, as tree-like local models allow

infinite paths. If a relation exists between a state and itself, transitioning behaviour

of the variable automata must be so that a final state must be visited once to comply

to the variable automata. This is similarly the case with the infinite path made by

an SCC. As the infinite path of the SCC is traversed, there must be a corresponding

infinite path in the constraint automata such that an final state is infinitely traversed.

If the SCC path is traversed and no final state in the variable constraint automata

is visited, the local model does not comply to the variable automata.

An example of update using variable constraint automata will be given in Case

Study 3 of the following chapter.

Action Constraint Compliance

As action constraint automata states are labelled with actions, constraint compliance

is maintained by identifying actions in the local model and mapping them to action

states in the automaton. Transitions between states in the automata are labelled

with action input symbols which dictate interaction between actions. To ascertain

that the local model action complies to the necessary constraints on how it interacts

with other actions in the local model, the action automata transitions state based

on ordering of actions in the local model along paths. If an action order is satisfied

the action automata can transition. Compliance to the action automata is then

dictated by the given automata state, rather final, non-final or violating. If the

local model encounters a leaf state and the automaton is in a non-final state we say
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the local model does not comply to the automaton. Similarly if transitioned to an

automaton violation state the local model does not comply to the automaton. A

side case for compliance is self loops and SCCs which constitute infinite paths in

tree-like structures. If a self loop or SCC exists in the local model there must be

some reachable state in the automata which is final.

As mentioned in Chapter 2, Section 2.5, three types of action input symbol exists

for action constraints which occur between actions; next, precedes, and exclusive. To

check compliance we need intermediary methods to ascertain satisfaction of actions.

We use checkNextSat, checkFutureSat, and checkPastSat,

Algorithm 4.20: checkNextSat(self, M , s, φa).

01 : def checkNextSat(self, M , s, φa):
02 : if M .isState(s) and M .hasSuccessor(s):
03 : for nextState in M .transitions[s]:
04 : if not self.checkSat(s, nextState, φa): return False
05 : return True
06 : return False

Next: Next is the base case for action constraint semantics. As described in Def-

inition 2.9, if an action constraint automata state has a relation to another state,

where the relation is labelled with a next input symbol, all immediate next actions

which occur in a local model must perform the action at the referenced related state.

This was described in terms of transition functions in Chapter 2.

Using the method checkSat, we can identify relations between states which sat-

isfy the criteria for performing an action present in an action constraint. Having

identified that a model state satisfies an action existing at a state in the action au-

tomata, if the constraint requires compliance with a next input symbol, all connected

next actions are checked in the local model by using checkSat. If some immediatedly

connected action does not satisfy next semantics, a violation flag is returned. Ap-

plying this, we can determine if some action occurs immediately after some action

and transition the automata accordingly.

checkFutureSat: checkFutureSat requires that an action occur along all future

paths. To ascertain that a model does this, a depth first search is performed from

the states resulting from the action. Using checkSat, each branch is checked, if some
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Algorithm 4.21: checkFutureSat(self, M , s, act).

01 : def checkFutureSat(self, M , s, act):
02 : if s in M.states.keys():
03 : try:
04 : travObj = M .modelTraverse(s)
05 : while True:
06 : s = travObj.next()
07 : if isSelfLoop(s):
08 : if not self.checkSat(s, s, act): return False
09 : if self.checkSat(M , s, snew act): travObj.skip()
10 : else:
11 : if not M .hasSuccessor(s): return False
12 : elif M .hasOrigin(s):
13 : if s in M .SCCs.keys():
14 : state = M .checkCycleSat(s, act)
15 : if not state: return False
16 : for cycleState in · · ·
17 : · · · M .SCCs.sccTransitions.keys():
18 : if cycleState == state: break
19 : if cycleState in M .outTransitions.keys():
20 : if not M .checkFutureSat· · ·
21 : · · · (M .outTransitions[cycleState], act):
22 : return False
23 : except StopIteration:
24 : del travObj
25 : return True

path is checked and no action exists which satisfies precedes semantics, a violation

exists and False is returned to indicate a path existing without the action.

checkPastSat: One of the conditions of exclusiveSat is that some action is not

before a given action. checkPastSat traverses back towards the root of the model to

determine if the action occurred earlier in the path. This method takes into account

the structural components of a tree-like model and completes a backwards traversal

which can ascertain action compliance of an earlier path. As the structure is a tree-

like model there will only be one path to check which possibly contains SCCs or self

loops.
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Algorithm 4.22: checkPastSat(self, M , s, act).

01 : def checkPastSat(self, M , s, act):
02 : sp = s
03 : s = M .destTransitions[s]
04 : while not self.checkSat(M , sp, s, act):
05 : if M .isSelfLoop(s):
06 : if not self.checkSat(M , s, s, act): return False
07 : sp = s
08 : s = M .retNonLoopState(s)
09 : else if M .inSCC(s):
10 : pathSCC = M .retSCC(s)
11 : if M .checkSCCSat(M , M .retSCC(s), s, act):
12 : return True
13 : sp = M .destTransition[pathSCC.entryPoint][0]
14 : s = pathSCC.entryPoint
15 : else:
16 : if s in M .destTransitions.keys():
17 : sp = s
18 : s = M .destTransitions[s][0]
19 : else: return False
20 : return True

Using these action compliance checker functions, we can ascertain the ordering

of actions occurring in a local model. We construct the method devised in Algorithm

4.2310. As with variable constraint automata, traversal involves beginning from the

initial state of the local model and automata. As the local model is traversed in a

depth-wise manner compliance to actions in connected states of the automata are

checked. If a specific pair of states in a local model are found to comply to an

action and its input symbol, the action automata transitions state. As with variable

constraints if the local model reaches a leaf state and the automata is not at a final

state, the local model violates the action automata. Similarly, if a violation trap

state in the automata is reached the action order in the local model violates the

action automata.

There also exists the case of self loops and SCCs in the local model transition

10actionCompliance makes reference to a generator actionTraverser on line 3. This is a
wrapper to modelTraverse returning tuples of states representing an action. This is excluded
based on its simplicity and similarity in structure to modelTraverse.
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Algorithm 4.23: actionCompliance(M , AC, sm, si).

01 : def actionCompliance(M , AC, sm, sa)
02 : try:
03 : actTrav = actionTraverser(M , sm)
04 : while True:
05 : act = actTrav.next()
06 : possActStates = AC.transitions[sa]
07 : for sanew in possActStates:
08 : for possSymbol in AC.actions[(sa, sanew)]:
09 : if symbol == ‘next’:
10 : if nextSat(M , act[1], sanew):
11 : sa = sanew
12 : elif symbol == ‘precedes’:
13 : if futureSat(M , act[1], sanew):
14 : sa = sanew
15 : elif symbol == ‘exclusive’:
16 : if futureSat(M , act[1], sanew) and not

· · · pastSat(M , act[1], sanew):
17 : sa = sanew
18 : if isLeaf(act[1]) and sa not in AC.final: return false
19 : if sa in AC.violation: return False
20 : except StopIteration:
21 : del actTrav
22 : return True

structure. These are again handled like variable constraints. Self loops require that

a final state is reachable in the automata by performing the action in the loop action.

If no final state is reachable the local model does not comply to the automata. In a

local model SCC there has to be a reachable final state in the automata accessible

by performing the actions which exist in the path made by the SCC. If none exists

the local model does not comply to the action automata. Included in the algorithm

is the use of an action generator (line 3 ). This is a wrapper function over a model

Traversal object that returns tuples of states corresponding to actions in a local

model. The operations of the action generator has been omitted from the text

based on its trivial nature.

Having methods for determining the compliance to action constraints in a local

model allows us to guide update towards modifications which satisfy a given ACTL
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property, while also complying to behaviour in a variable constraint. These methods

can be used in parallel to model update techniques to the effect of better guiding

update towards desired behaviour.

4.6 Summary

In this chapter we have looked at the central functionality of the packages contained

in the l-Up local model update tool. This has given us the opportunity to provide

insight into how the elements of the implementation work together to derive fixes to

local models from models specified in the SMV language. These packages are open

repositories of code which can be used for future development in the field of model

checking and update.

Having given implementation details, we apply the update process to two case

studies; the semaphore sharing scenario, demonstrating application to process star-

vation situations and the Sliding Window Protocol; showing application to a sit-

uation where a man-in-the-middle attack can cause interruptions in transmission.

Finally, we extend the local model update technique with constraint automata to

better constrain the approach and give an example in the SPIN environment involv-

ing mutual exclusion between two processes entering a critical region, and dictate

update behaviour through variable constraint automata.



Chapter 5

Case Studies for Update

In this chapter we present three case studies that illustrate, with applications, the

local model update theory and tools. To begin, in Section 5.1 we model an abstracted

semaphore sharing scenario between two user processes and devise counterexample

repairs, such that a local model satisfies fairness properties. Following this, in Section

5.2 we provide the case study of an abstracted representation of the Sliding Window

Protocol (SWP), where we derive candidate repairs for a model, exhibiting a man-

in-the-middle attack modifying regular module behaviour. Finally, we present a

further case study showing the efficacy of local model update in Section 5.3, with

the technique used in conjunction with constraint automata to demonstrate how

inclusion of variable and action constraints reduces complexity and derives more

applicable results. This is done in the SPIN model checking environment.

In the first two sections, formulas taking the form of AG(¬p∨ AFq) are used.

This form of specification is useful, in that the truth value of some propositional atom

in the model can be bound to the truth value of another propositional atom along

all paths given some condition. These formulas are useful as a means of describing

fairness conditions between processes sharing some resource (In all cases, if some

process goes into an entering state, it should eventually enter the critical region) or

describing communication in a channel (If the sender has some specific value, then

in all futures the receiver should at all futures hold this value). This specification is

also non-trivial to update some local model by. This is because each state available

from the root state needs to satisfy the sub-formula ¬p∨ AFq and it is often the

case that a smaller subset of modifications can be found to satisfy every unsatisfied

state.
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5.1 Case Study 1: Semaphore Sharing

In this subsection we will demonstrate the approach on a modified semaphore shar-

ing scenario taken from the NuSMV examples repository [100], semaphore.smv. In

Figure 5.1 we define the behaviour of a user accessing a semaphore to secure some

resource.

01 : MODULE user(semaphore)

02 : VAR
03 : state : {idle, entering, critical, exiting};

04 : ASSIGN
05 : init(state) := idle;
06 : next(state) :=
07 : case
08 : state = entering & !semaphore : critical;
09 : state = critical : {critical, exiting};
10 : state = exiting : idle;
11 : 1 : state;
12 : esac;
13 : next(semaphore) :=
14 : case
15 : state = entering : 1;
16 : state = exiting : 0;
17 : 1 : semaphore;
18 : esac;

Figure 5.1: Semaphore user definition module.

User takes a single boolean argument, semaphore, which indicates the occupied

status of some resource. User also defines a variable state, indicating the status of

the user in accessing the resource. This has the domain values idle, entering (i.e.

attempting to access the semaphore), critical (i.e. holding the critical region), or

exiting, (i.e. semaphore is released) and finally returning back to the idle state. In

this program each users state is initialised as idle. Transitioning behaviour based on

semaphore are also defined in this module, where the semaphore bit is set to held

(i.e. 1) when the user is in the entering state and released when in the exiting state.

After defining the module which details how a user behaves when setting a
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semaphore, we define the interaction between the users and the semaphore in the

main (Figure 5.2) and assert properties we wish the model to satisfy. We define

a semaphore (line 3 ) and initially set it to 0 (released). Also, we define two user

processes proc1 and proc2 each taking the boolean semaphore as the argument.

01 : MODULE main

02 : VAR
03 : semaphore : boolean;
04 : proc1 : process user(semaphore);
05 : proc2 : process user(semaphore);

06 : ASSIGN
07 : init(semaphore) := 0;

08 : SPEC AG(!(proc1.state = critical & proc2.state = critical))

09 : SPEC AG(proc1.state = entering → AF (proc1.state = critical))
10 : & AG(proc2.state = entering → AF (proc2.state = critical))

11 : FAIRNESS running

Figure 5.2: Semaphore main module.

Finally we declare two ACTL specifications we would like to hold true for the

model (lines 8 and 9 ). Firstly we desire that at all states of the model there

cannot be some state where both processes state have them be in the critical re-

gion (i.e. AG !(proc1.state = critical & proc2.state = critical)). We also wish

that when a user process goes into an entering state that eventually it will, under

all cases, enter the critical region. This is represented using the ACTL formula

AG(proc1.state = entering → AF(proc1.state = critical)) & AG (proc2.state =

entering → AF(proc2.state = critical)).

Analysing the program as a whole, we can see semaphore.smv has two enumer-

able variables with a domain size of 4 (idle, entering, critical, exiting), and a single

binary variable which has 2 states. This gives us a total state space of 42 × 2 = 32.

With the model constructed and the desired properties specified we pass control to

the NuSMV verification tool to determine satisfaction of the property and derive

counterexamples to analyse.
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5.1.1 Program Domain and Counterexample Extraction

Calling NuSMV, we derive a counterexample semaphore.cex after the model checker

has found that the model did not hold the second property AG(proc1.state =

entering → AF(proc1.state = critical)) & AG(proc2.state = entering →

AF(proc2.state = critical)). The counterexample describes the path 1.01 → 1.02 →

1.03 → 1.04 → 1.05 → 1.06 → 1.07 → 1.08 → 1.09 → 1.10 → 1.05 . . .. con-

taining the Strongly Connected Component (SCC) [24] . . . → 1.05 → 1.06 →

1.07 → 1.08 → 1.09 → 1.10 → 1.05 → . . .. The counterexample works as a

witness to the model allowing proc1 to hold an entering state and a path ex-

isting where proc1 never goes into the critical state. In Figure 5.3, we give a

transition graph showing the counterexample expressing the violation of the prop-

erty1. Similarly, we note that NuSMV found that the model held the property

AG(!(proc1.state = critical & proc2.state = critical)) and thus didn’t require mod-

ification to satisfy it.

Figure 5.3: Counterexample for property.

With this, the counterexample can be represented by the Kripke structure M =

(S, R, L);

1See appendix C for the full counterexample provided by NuSMV for this update case
study.
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S = {1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10},

R = {(1.01, 1.02), (1.02, 1.03), (1.03, 1.04), (1.04, 1.05), (1.05, 1.06),

(1.06, 1.07), (1.07, 1.08), (1.08, 1.09), (1.10, 1.05)};

L(1.01) ={semaphore = 0, proc1.state = idle, proc2.state = idle},

L(1.02) ={semaphore = 0, proc1.state = idle, proc2.state = entering},

L(1.03) ={semaphore = 1, proc1.state = idle, proc2.state = critical},

L(1.04) ={semaphore = 1, proc1.state = entering, proc2.state = critical},

L(1.05) ={semaphore = 1, proc1.state = entering, proc2.state = exiting},

L(1.06) ={semaphore = 0, proc1.state = entering, proc2.state = idle},

L(1.07) ={semaphore = 0, proc1.state = entering, proc2.state = entering},

L(1.08) ={semaphore = 1, proc1.state = entering, proc2.state = critical},

L(1.09) ={semaphore = 1, proc1.state = entering, proc2.state = critical},

L(1.10) ={semaphore = 1, proc1.state = entering, proc2.state = exiting},

Looking at the counterexample, we can see that all states satisfy the specifica-

tion that proc2.state = entering → AF(proc2.state = critical) and from state 1.04

all states do not satisfy the formula proc1.state = entering → AF(proc1.state =

critical). This is because all states from 1.04 satisfy proc1.state = entering, but

there is no state in the path which satisfies proc1.state = critical, as required by

AF. To simplify the update process for the algorithm, we reduce the ACTL formula

through equivalences and ground any variables bound to a domain into propositional

atoms (an automatic process in the implementation prototype described in the pre-

vious chapter). Further, we replace propositional atoms in property formulas with

the index of their valuation in propositional atoms as an encoding practice to aid

space efficiency and speed in implementation.

Checking the domain for the variable state in the user module, we find it is

an enumerable type with domain {idle, entering, critical, exiting}. As discussed

in Subsection 4.2.4 of Chapter 4 these variables can be represented as proposi-

tional atoms in the update framework. As state has a domain size of 4, it can be

represented with 2 propositional atoms2. In this way each valuation on the vari-

ables in the counterexample can be represented in terms of propositional atoms

2we subscript atoms with a numbering to uniquely identify them against other atoms
representing the same variable.
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AP = {proc1.state1, proc1.state2, proc2.state1, proc2.state2, semaphore} using

the original framework proposed for Kripke structures in Chapter 2. In this way,

a valuation on the domain of proc1.state can be made by making valuations on

proc1.state1 and proc1.state2. Applying a valuation of proc1.state = critical would

have an equivalent propositional atom representation of ¬proc1.state1∧proc1.state2.

This can be substituted into the property to complete the translation in the under-

lying system.

As an efficient method of representing valuations on the propositional atoms at

each state, we reduce each variable to its propositional atom form and represent the

valuation by applying a boolean valuation to each propositional atom. As the size

and position of elements in AP will be the same for each state, we can represent these

as contiguous blocks of true and false encodings for each variable. proc1.state can

be represented with the binary mapping “proc1.state = idle” = 00, “proc1.state =

entering” = 10, “proc1.state = critical” = 01, “proc1.state = exiting” = 11. The

variable semaphore is defined as a binary variable and its domain can be represented

using the mapping “semaphore = 1” = 1 and “semaphore = 0” = 0. We can

construct a valuation string v for each state in the local model M , where v[0] −

v[1] represent proc1.state, and v[2] − v[3] represent proc2.state and v[4] represents

semaphore. We then transform the label space to the labels:

L(1.01) = 00000, L(1.02) = 00010, L(1.03) = 00101, L(1.04) = 01101,

L(1.05) = 01111, L(1.06) = 01000, L(1.07) = 01010, L(1.08) = 01101,

L(1.09) = 01101, L(1.10) = 01111

In total, all valuations to labels for each state in the local model is represented

in 50 bits.

In implementation we wish to have a fast method of accessing a valuation of

some atomic proposition at a state. As we have the previous encoding for reducing

variables to propositional atoms at a state, we can represent a value given to a

variable by its propositional atom indices in the valuation string, given for each

state in the model. Replacing variable valuations in ACTL properties with their

propositional form, represented by their index in the valuation string makes access

of a value for an atom at a state efficient and bridges the gap between the theoretical
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system and types allowable in NuSMV. The atoms are represented in the formula

by the index of the propositional atoms valuation at each state (e.g. if semaphore

= 0 was in the ACTL formula, ¬(4) would replace it; if we checked state 1.09 by

¬(4), v[4] of 1.09 is true, thus ¬(4) is not true.).

Applying this process to the ACTL formula, we would get the reduced for-

mula AG((¬0 ∧ 1) → AF(0 ∧ ¬(1)))∧ AG((¬2 ∧ 3) → AF(2 ∧ ¬(3))). If we repre-

sented this in the reduced propositional atom form used for theory, we would get

AG((¬proc1.state1 ∧ proc1.state2) → AF(proc1.state1 ∧ ¬(proc1.state2))) ∧

AG((¬proc2.state1 ∧ proc2.state2) → AF(proc2.state1 ∧ ¬(proc2.state2))) where

0 refers to the index of proc1.state1, 1 to proc1.state2, 2 to proc2.state1, 3 to

proc2.state2, and 4 to semaphore. We apply equivalences to simplify the formula

and bubble negation to propositional atoms (AG(φ)∧ AG(ψ) ≡ AG(φ∧ψ), implica-

tion, de Morgans laws and double negation equivalences). This produces the formula

AG(0∨¬1∨ AF(0∧¬(1))∧ 2∨¬3∨ AF(2∧¬(3))). Based on this, we can apply the

reduced formula to M via Updatec() and derive a minimal modification.

5.1.2 Deriving Update

We pass the local model, current state and unsatisfied formula to the function

Updatec(). Updatec() recognises the root formula being AG and passes control

to the function UpdateAG() to apply its semantics to the underlying model.

Next, UpdateAG() applies the sub-formula to each connected state using Updatec()

from the current and saves the results. Semantics for Update∧() are used and for

the second subformula of ∧ we find that for every state in M , (M, s) |= 2 ∨ ¬3∨

AF(2 ∧ ¬(3)), and no modification is required based on this subformula (2 and 3

represent the indexed valuation string locations for the values of proc2.state which

satisfy the property at every state). For the first subformula 0 ∨ ¬1∨ AF(0 ∧ ¬(1))

Update∨(), is called.

The states 1.01, 1.02, and 1.03 each satisfies either 0 or ¬1 (representing

¬proc1.state = entering). Beyond these, every state satisfies proc1.state = entering

but has no connecting path satisfying proc1.state = critical. For these seven states
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the possible updates include substituting the current state, such that the valuation

at index 0 is true or 1 is false, or substituting a future state 1.06 such that it satisfies

both 0 and ¬1.

In UpdateAG(), these updates are compared based on weak bisimulation se-

mantics and it can be seen that, in choosing one update to satisfy each state

such that we get the most minimal modification to a model, UpdateAG() selects

U = {(1.06,+, 0) ∧ (1.06,−, 1)}, as this will satisfy the formula at each unsatisfying

state. This is done substituting a state with a new state satisfying the valuation on

the two atoms. This is also optimal by weak bisimulation semantics as SCCs states

have no notion of depth and if any branches exist in the SCC the formula will have

already been satisfied in the SCC, satisfying any other path.

1.04: U = {(1.04,+, 0) ∨ (1.04,−, 1) ∨ {(1.06,+, 0) ∧ (1.06,−, 1)}}
1.05: U = {(1.05,+, 0) ∨ (1.05,−, 1) ∨ {(1.06,+, 0) ∧ (1.06,−, 1)}}
1.06: U = {(1.06,+, 0) ∨ (1.06,−, 1) ∨ {(1.06,+, 0) ∧ (1.06,−, 1)}}
1.07: U = {(1.07,+, 0) ∨ (1.07,−, 1) ∨ {(1.06,+, 0) ∧ (1.06,−, 1)}}
1.08: U = {(1.08,+, 0) ∨ (1.08,−, 1) ∨ {(1.06,+, 0) ∧ (1.06,−, 1)}}
1.09: U = {(1.09,+, 0) ∨ (1.09,−, 1) ∨ {(1.06,+, 0) ∧ (1.06,−, 1)}}
1.10: U = {(1.10,+, 0) ∨ (1.10,−, 1) ∨ {(1.06,+, 0) ∧ (1.06,−, 1)}}

Figure 5.4: Possible types of update on semaphore to satisfy AGφ.

Applying these modifications to the underlying local model with Updateapply()

we derive the local model fix

S = {1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, 1.10};

R ={(1.01, 1.02), (1.02, 1.03), (1.03, 1.04), (1.04, 1.05), (1.05, 1.06),

(1.06, 1.07), (1.07, 1.08), (1.08, 1.09), (1.10, 1.05)};

L(1.01) = 00000, L(1.02) = 00100, L(1.03) = 00011, L(1.04) = 10011,

L(1.05) = 10111, L(1.06) = 01000, L(1.07) = 10100, L(1.08) = 10011,

L(1.09) = 10011, L(1.10) = 10111.

Translating the modification to L(1.06) back from the binary notation to variable

form, we have the modification L(1.06) = {proc1.state = critical, proc2.state =

idle, semaphore = 0}, and we can see the applied modification in Figure 5.5. We
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can also see that this new local model fix satisfies the primary property originally

posed (AG !(proc1.state = critical & proc2.state = critical)). If necessary, this

property can also be given to the Updatec() algorithm with the model fix to make

certain the new updated local region satisfies both properties.

Figure 5.5: Local model fix for counterexample.

5.1.3 Results

Looking at the consequence of update, we can see faults inherent in the approach.

Analysing the transition block for a user process in the program, many conditions

must be satisfied before entering the critical section. Primarily the semaphore flag

must be set; when leaving the critical section a graceful exit is expected by the

process (looking at the updated local model, we see that proc1.state = exiting is not

true at state 1.07). To better tailor our updates we need to take into account domain

information in the process. In Section 5.3, we show how declared action and variable

constraints can be a means of better guiding the update process in conjunction with

the given temporal properties. In the following section we give another example of

update and give a better analysis of worse case time complexity.
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5.2 Case Study 2: Sliding Window Protocol

To demonstrate an application of local model update, we apply the process to an

abstracted model of the Sliding Window Protocol (SWP) containing an attacker

modifying data packets sent to a receiver. We derive a minimal fix to the counterex-

amples derived from the checking of the transmission protocol model3.

In SWP the process occurs between three entities: a sender, a receiver and their

given medium. Messages with unique identifiers are passed through the medium to

the recipient, who then sends an acknowledgement token back through the medium

along with the original messages identifier. Both sender and receiver maintain state

by keeping a copy of the last identifier value sent. In the following section we will

give a deeper insight into SWP.

5.2.1 Background

Sliding window is a common protocol used for point to point packet-based commu-

nication in networked environments. The protocol is used to maintain limited state

between a sender and receiver, such that messages can be sent by one member and

the other returns an acknowledgement of the messages receipt. Notable examples

of Sliding Window Protocol variants are Point-to-Point Protocol (PPP) and general

TCP connections [49].

The window between the sender and receiver is the space left between the amount

of messages sent and the individual acknowledgements per message received back.

Once an acknowledgement is received back from the message receiver, the sender’s

window slides forward a unit. Similarly, when a message is received from the sender

the receiver’s window slides forward a unit. When the maximum window size per

identifier is reached the identifier rolls back to the beginning, thus the window of

messages and acknowledgements between sender and receiver is a type of circular

queue. In standard SWP the window size is determined by the amount of packets

lost in transmission. The receipt of packets by the receiver dictates window size. If

3This case study was originally published in [102].
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a packet is not received by its end-point within an allocated time it is considered

a timed out and in the next sliding window round window size is reduced. On the

other hand, window size is increased if packets are sent and acknowledged without

timing out.

Figure 5.6: Go-back-n Sliding Window Protocol.

As packets can be lost in the medium a method for handling data loss is required.

Sliding window has two methods for handling errant packets, go-back-n and selective

reject. In Go-back-n, as shown in Figure 5.6, the receiver window size is kept at 1

such that if a message packet is lost the receiver stops sending acknowledgements

until a message with the correct identifier is received. The sender will eventually

retransmit from the original lost frame and when accepted by the receiver, the

receiver will return an acknowledgement. The other method, selective reject has the

receiver resend the last acknowledgement so the sender knows to resend the packet,

which occurs after the acknowledgement with the old identifier. In sliding window

protocol variables such as link speed, window and packet size affect elements such

as medium congestion and saturation.

5.2.2 Methodology

The applied method for determining the worst case complexity and efficacy of local

update is similar in scope to the previous case study, however a more complex variant

on the property is used and the case study is conducted with running time and

resource use in mind, over process explanation. This case study involves modelling

SWP by iteratively increasing window size to determine computation time for update



5.2. Case Study 2: Sliding Window Protocol 155

as model and formula size increases. For the purposes of this test we check window

size ranging for n = 2 . . . 8 and log computation time. By increasing window size

we increase the variable domain for the variables, representing sent and received

packets and by connection the total state count. Window size has an n3 relationship

to model state count (i.e. a window sizes of range 2 . . . 8 yield a model state count

ranging from 8 to 512, based on declaring three interval values). This is related to

the propositional atoms generated through the interval values, however in practice

many of these states are not reachable.

Another point to note about the update process, due to local models being, by

definition, a subset of states from the original which, starting from the root state,

lead up to the state violating the property, it is the case that every state within the

tree-like model will be a reachable state. In the previous iteration of model update

many of the states of the resultant model would not be reachable from the initial

state.

For the purpose of modelling, we use the NuSMV language. We define a liveness

property we wish to check based on the window size specified. We apply equiva-

lences to specifications given and perform preprocessing to the model and for each

successive model we find (M, s) 6|= φ and derive a counterexample C with which we

apply updatec(C, φ), such that C |= φ. All experiments are completed on a system

with an AMD Phenom 8450, 2.10GHz, 3-core processor and 4GB 800MHz RAM.

5.2.3 Modelling Sliding Window

For the purpose of simplicity we abstract out many of the details of the protocol to

verify a single property in the model. We have also assumed a perfect transmission

medium and have abstracted issues of the transmission medium from the domain.

For the purposes of the session we ignore the packet being sent and only model the

message identifier. Finally, in true sliding window protocol window size is determined

by the count of data failures in sending a packet from the sender to receiver. If some

x failures occur, the window size is reduced. For the purpose of this abstract model

this feature has also been removed, and the window size is varied to study complexity.
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We define two processes, the sender and receiver which accept two arguments

representing the packet identifier sent and received either way, each called sendId

and receivedId respectively, and the window size for the current modelling session4.

The incrementing of each identifier represents the shifting window buffer performed

on the sender module when it receives an identifier value one higher than its last

sent message. With this it sends out a message with the next identifier.

01 :MODULE sender(receivedId, n)01 :MODULE receiver(sentId, n)
02 : VAR 02 : VAR

03 : sentId : 0 . . . (n− 1); 03 : receivedId : 0 . . . (n− 1);
04 : ASSIGN 04 : ASSIGN

05 : next(sentId) := 05 : next(receivedId) :=
06 : case 06 : case
07 : (sentId+ 1) mod n = . . . 07 : (sentId = receivedId) : . . .
08 : . . . receivedId : 08 : . . . receivedId;
09 : ((sentId+ 2) mod n) . . . 09 : 1 : ((receivedId+ 1) mod n);
10 : . . . union sentId; 10 : esac;
11 : 1 : (sentId+ 1) mod n; 11 : FAIRNESS running
12 : esac;
13 : FAIRNESS running

Figure 5.7: Sender and Receiver module.

The receiver sends an acknowledgement when it receives an identifier higher than

the last message, returning the identifier received. As in traditional SWP, when the

window buffer is full and all acknowledgements have been received a new window is

established, rolling back the identifier to zero and sending the next set of data. In

the SMV model, this is represented with the modulo (line 8 of the receiver module).

To cause the model to violate the given property we introduce a man-in-the-

middle attacker which takes the identifier and returns it altered, as shown in Fig-

ure 5.8. Here, we can see that the attacker takes two arguments (line 2 ), the first

being the interceptId, and at line 8 modifies the send identifier so that the receiver

will never receive an identifier of 2, forcing a time out. Finally, we declare how these

processes interact in the variable declaration of the main module and establish an

initial value for the variables of the process, setting each value to start with the

identifier 0 (lines 9-11 ).

4For the sake of simplicity we use a window size n = 5.
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01 :MODULE attacker . . . 01 :MODULE main
02 : . . . (interceptId, n) 02 :
03 : VAR 03 : VAR

04 : returnId : 0..n; 04 : s : process sender(r.receivedId, n);
05 : ASSIGN 05 : a : process attacker(s.sentId, n);
06 : next(returnId) := 06 : r : process receiver(a.returnId, n);
07 : case 07 :
08 : (interceptId = 2) : 4; 08 : ASSIGN

09 : 1 : interceptId; 09 : init(s.sentId) := 0;
10 : esac; 10 : init(r.receivedId) := 0;
11 : FAIRNESS running 11 : init(a.returnId) := 0;

Figure 5.8: Attacker and Main modules.

With a completed model, we move onto establishing desired properties which

should be inherent in model execution and verification. Following this, we apply

NuSMV and derive counterexamples explaining the violations of the property.

5.2.4 Properties and Checking

In this representation of the protocol we wish to establish a liveness property over

the identifier being sent through the transmission medium. We say that at every

state in the model on every computational path and for every value of the window n

sent (s.sentId) implies that it will always be eventually received (r.receivedId). We

express this using the ACTL specification:
∧
i AG(s.sentIdi → AF(r.receivedIdi)).

With the model and property clearly defined, we apply a model checking session

in NuSMV to ascertain the satisfaction of the property in the model. The model

description for each differing window size is defined in its own file with the SMV file

extension. The file names are appended with the window size attributed to the given

file such that each SMV model file can be identified by its window size. For each

SMV model file the maximum window size is defined and the property is expanded

such that the property can be interpreted for the checking session. An example of

this for window size five in NuSMV:
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SPEC AG((!(s.sentId = 0)|(AF(r.receivedId = 0)))&

(!(s.sentId = 1)|(AF(r.receivedId = 1)))&

(!(s.sentId = 2)|(AF(r.receivedId = 2)))&

(!(s.sentId = 3)|(AF(r.receivedId = 3)))&

(!(s.sentId = 4)|(AF(r.receivedId = 4))))

For each iterative window size NuSMV is called using the system command

NuSMV -r slidingwindown.smv > swpcexn.cex

The result from checking the property is returned to swpcexn.cex, where n is the

window size. The session result file is then parsed and the result is checked. The

counterexample returned from NuSMV is extracted and built into a Kripke structure

which can be traversed and have Updatec be applied to effect modification.

To simplify the property for program use we use equivalences and transform it

to DNF. This allows the update algorithm to evaluate negation as applied to propo-

sitional atoms and evaluate possible update sets as disjunctions of terms, turning

the update process into a search problem for the most minimal set of updates, as

dictated by the weak bisimulation guided minimal change semantics. In the case of

a window size equal to five, this explodes the count of propositional atoms in the

formula from 10 to 160 and creates 128 terms connected by 31 nested clauses.

AG((¬(s.sendId = 0) ∧ ¬(s.sendId = 1) ∧ ¬(s.sendId = 2)
∧ ¬(s.sendId = 3) ∧ ¬(s.sendId = 4)) ∨ ... ∨ (AF(r.receivedId = 0)∧
AF(r.receivedId = 1)∧ AF(r.receivedId = 2) ∧ AF(r.receivedId = 3)∧

AF(r.receivedId = 4)))

Figure 5.9: Formula transformed using DNF with n = 5.

5.2.5 Counterexample to Kripke Structure Translation

Having called NuSMV, we receive a report of the model checking session on the

model5. For window size n = 5 NuSMV returns the counterexample representing

the path 1.01 → 1.02 → 1.03 → 1.04 → 1.05 → 1.06 → 1.07 → 1.08 → 1.09 →

5See Section B.3 of Appendix B for the full counterexample for window size n = 5
referenced in this case study, or the examples section of l-Up for other values of n.
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1.10 → 1.11 → 1.08 . . . which contains the SCC . . . → 1.08 → 1.09 → 1.10 →

1.11 → 1.08 . . .. This counterexample is a witness to the fact that for multiple values

of s.sentId becoming true there doesn’t exist a corresponding value for r.receivedId

in any future which equals the value of s.sentId. This counterexample trace is

translatable to the tree-like Kripke structure C = (S,R,L)

S = {1.01, 1.02, 1.03, 1.04, L(1.01) = {s.sentId = 0, r.receivedId = 0},

1.05, 1.06, 1.07, 1.08, L(1.02) = {s.sentId = 1, r.receivedId = 0},

1.09, 1.10, 1.11}; L(1.03) = {s.sentId = 2, r.receivedId = 0},

L(1.04) = {s.sentId = 2, r.receivedId = 1},

R = {(1.01, 1.02), (1.02, 1.03), L(1.05) = {s.sentId = 2, r.receivedId = 2},

(1.03, 1.04), (1.04, 1.05), L(1.06) = {s.sentId = 2, r.receivedId = 3},

(1.05, 1.06), (1.06, 1.07), L(1.07) = {s.sentId = 2, r.receivedId = 4},

(1.07, 1.08), (1.08, 1.09), L(1.08) = {s.sentId = 3, r.receivedId = 4},

(1.09, 1.10), (1.10, 1.11), L(1.09) = {s.sentId = 0, r.receivedId = 4},

(1.11, 1.08)}; L(1.10) = {s.sentId = 1, r.receivedId = 4},

L(1.11) = {s.sentId = 2, r.receivedId = 4}.

Figure 5.10: Local model for window size n = 5. s represents s.sentId and r
r.receivedId.

Using the script class smvCounterexample and smvProgram from the previous

chapter, we find that s.sentId and r.receivedId are interval values. For the current

program the interval size for variable domains is 0..4 (0, 1, 2, 3, 4 ). As in the

previous case study, we can reduce these variable labels into a propositional atom

format to perform operations upon and correspondingly, the property. For these

labels, we find that each interval value can be represented with 3 bits each (5 elements

in the domain, 22 can represent 4 elements, 23, 8 elements).



5.2. Case Study 2: Sliding Window Protocol 160

Convention 5.1. Here, we enlist a notation for labels which only shows propo-

sitional variables in the label space which are true, for the sake of brevity. The

set of atomic propositions for the model domain with a window size n = 5 is

AP = {s.sentId1, s.sentId2, s.sentId4,

r.receivedId1, r.receivedId2, r.receivedId4}.

Here, the label function L(1.08) = {s.sentId = 3, r.receivedId = 4} is represented

in the underlying system as L(1.08) = {s.sendId1, s.sendId2,¬s.sendId4,

¬r.receivedId1,¬r.receivedId2, r.receivedId4}. In other words, the valuation 3 on

s.sentId can be asserted with the propositional formula s.sendId1 ∧ s.sendId2 ∧

¬s.sendId4. The property used to update the model at the state becomes ¬s.sentId1∨

¬s.sentId2 ∨ AF (r.receivedId1 ∨ r.receivedId2). To represent these valuations in

implementation, we can reduce the valuation into a binary string at a state6.

L(1.01) = 000 000, L(1.02) = 100 000, L(1.03) = 010 000, L(1.04) = 010 100,
L(1.05) = 010 010, L(1.06) = 010 110, L(1.07) = 010 001, L(1.08) = 110 001,
L(1.09) = 000 001, L(1.10) = 100 001, L(1.11) = 010 001.

Figure 5.11: Reduced label space for local model.

We also reduce the variable statements in the ACTL formula to match the

label space. Here, each integer value in the property represents the index of a

propositional atoms valuation at a state. In other words, in all state valuation

strings, the valuation on s.sentId1 is at index 0, s.sentId2 is at index 1, s.sentId4 is

at index 2, r.receivedId1 is at index 3, r.receivedId2 is at index 4, and r.receivedId4

is at index 5. Valuation index values will be referenced as an encoded short hand,

as referencing the full propositional atom labels makes the overall formula structure

less legible. Using this form of valuation index encoding for properties is used in

implementation, as it is faster to map a property atom index to a valuation at a

state.

AG((0 ∨ 1 ∨ 2)∨ AF(¬3 ∧ ¬4 ∧ ¬5) ∧ (¬0 ∨ 1 ∨ 2)∨ AF(3 ∧ ¬4 ∧ ¬5)∧

(0 ∨ ¬1 ∨ 2)∨ AF(¬3 ∧ 4 ∧ ¬5) ∧ (¬0 ∨ ¬1 ∨ 2)∨ AF(3 ∧ 4 ∧ ¬5)∧

(0 ∨ 1 ∨ ¬2)∨ AF(¬3 ∧ ¬4 ∧ 5))

6Valuations are broken into groups of three bits in Figure 5.11 to show the representation
of variables s.sentId and r.receivedId.
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As an example we update the state 1.05 by label r.receivedId = 0, where 1.05

has the label function L(1.05) = {s.sentId2, r.receivedId2}. In the system repre-

sentation r.receivedId = 0 is equivalent to ¬3∧¬4∧¬5. To satisfy this propositional

atom and maintain single value variable consistency, the update U = {(1.05,−, 4)}

will satisfy the conditions.

In usage, the returned counterexample with window size five can be visualised

using the counterexample transition graph seen in Figure 5.107. Comparing the

given states in the Kripke model against the clauses of the model property we can

see where each state violates the property.

1.01 . . . 1.05 |= φ
1.06 . . . 1.07 6|= (¬(s.sendId = 2))∨ AF(r.receivedId = 2)
1.08 6|= (¬(s.sendId = 3))∨ AF(r.receivedId = 3)
1.09 6|= (¬(s.sendId = 0))∨ AF(r.receivedId = 0)
1.10 6|= (¬(s.sendId = 1))∨ AF(r.receivedId = 1)
1.11 6|= (¬(s.sendId = 2))∨ AF(r.receivedId = 2)

Figure 5.12: Counterexample states satisfying clauses of the property.

We now analyse the counterexample structure and determine which states do

not satisfy which sections of the property given and get an intuition of how the

modification can be performed to satisfy the property. We can see that states

1.01 through 1.05 satisfy the property, as every value in the domain of r.receivedId

eventually occurs in all future states. We can see that states 1.06, 1.07 and 1.11

do not satisfy (¬(s.sendId = 2))∨ AF(r.receivedId = 2) as s.sendId = 2 is true

at each of the listed states and r.receivedId = 2 never becomes true for the cases

of states 1.08, 1.09 and 1.10. This trend continues as we find they do not satisfy

the sub-property for window values 3, 0 and 1 respectively. To satisfy these sub-

properties we can see that we will rather have to remove s.sentId = n from the

current state or at some future state by r.receivedId = n. As was discussed in

Chapter 2, the intuition behind update is that modification which occurs at lower

depths of the tree-like model will be favoured over higher depth modifications. We

can see that updates which favour the subproperty AF(r.receivedId = n) will be

enacted to satisfy the property.

7We show the simplified counterexample, states which held no change between transi-
tions were abstracted out to illustrate the violation, the original counterexample contained
nineteen states and three variables. This can be seen in Appendix C.2.
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With this analysis complete we apply an update session using Updatec, such

that the given local models satisfies the properties with their allocated window size.

The process is timed to establish efficiency of the update tool against theorised

complexity.

5.2.6 Deriving Update

For each operation type encountered in the property, the semantics from Defini-

tion 2.1 determines how the model can be manipulated to satisfy the property. For

the property in the example the ACTL tokens are AG, AF, ∨,∧ and ¬8. Based on

the property operation and state passed as argument the update will be routed to

the method created to enact the update as described in Chapter 3.

In Updatec a high level update will be performed for the AG operator using

the method UpdateAG
9. The nested disjunctive clauses will be evaluated with the

Update∨ member function, evaluating its lower level conjunctive terms to determine

which is the minimal update. In UpdateAG each state in the path is checked to

determine what the possible updates are that will satisfy the current formula at a

given state. As the subformula translates to ¬s.sentIdn∨ AF(r.receivedIdn)
10 we

have three operations to process for each state. Disjunction goes first with Update∨

and returns the minimal result to the calling method (i.e. UpdateAG). Update∧

will evaluate terms of atoms and return the set of updates which are required to be

performed to satisfy the given state.

These results include applying ¬sentIdn and AF(receivedIdn) to each appro-

priate state using the respective member functions Updatep and UpdateAF . In the

prior case, we determine the result of substituting the state with another not satis-

fying the label sentIdn and satisfy some other domain value n for sentId. This will

result in two cases. Rather the state satisfies the negative valuation on the label and

returns the empty update set U = ∅, or doesn’t satisfy the label and the update set

is returned as applying some other valuation from the domain at the state. In the

former case, we apply the update for the universal future token AF(r.receivedIdn).

As characterised earlier, we traverse the model and apply the update to each of the

8For further information on semantic satisfaction of CTL temporal operators see [66].
9The update is high level in the sense that it is being called from the root of the property

formula and execution requires filtering down to each node of the formula tree.
10In the case of n = 5, s.sentId reduces to 0, 1 and 2 and r.receivedId 3, 4, and 5.
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lowest states in each branch of the tree-like model. In this case the only branch

available will terminate with a SCC. In this case AF semantics dictate that SCC

states are depth equivalent and the first entry state into the SCC is sufficient for

update. This will return the update set which modifies r.receivedIdx at the first

SCC entry point state.

As only one valuation can be applied to a variable of a certain domain at one

state, consistency of updates becomes an issue when multiple updates need to occur

with different domain valuations for the same variable. This is especially the case

in SCCs where characterisations indicate that updating the first entry point state is

the best approach. As states in a SCC are often depth equivalent we can maintain

variable valuation consistency by staggering updates such that update is effected and

consistency in valuation is maintained at a state level. This issue can also be solved

by referring to persistence properties and extending paths to satisfy the necessary

property.

Applying AG semantics to the counterexample, it is found that states 1.06 . . . 1.11

do not satisfy some subformula of the overall desired property. Applying the up-

date process to the counterexample given, we find the following possible updates are

applicable for each state.

Figure 5.13 represents each update option for UpdateAG. We can see that at

each state the option exists to satisfy the state by substituting it with another which

does not satisfy the state value given for s.sentId and some other value from the

domain to replace the previous value. Another possibility exists for update which

involves satisfying AF(r.receivedIdn) at some state in the SCC, and substituting the

previous valuation on the variable with another, based on the notion that SCC states

are depth equivalent. Looking at these possible updates we compare them with the

minChange algorithm discussed in Subsection 3.2.6 of Chapter 3 and compare each

update.

Looking at the possibilities, we note that the first, updating each state by its first

update s.sentIdn gives a relatively low weighting, as many of the depth values for

the updates occur higher in the model than the updates involving AF(r.receivedIdn)

were used. As states in a SCC are considered equal based on depth, if we considered

only the updates which occur inside the SCC (the deepest region) there would be
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1.06: U = {{(1.06,+, 0) ∨ (1.06,−, 1) ∨ (1.06,+, 2) ∨ (1.06,−, 3)}
∨ {(1.07,+, 4) ∧ (1.07,−, 5)} ∨ {(1.08,+, 4) ∧ (1.08,−, 5)}
∨ {(1.09,+, 4) ∧ (1.09,−, 5)} ∨ {(1.10,+, 4) ∧ (1.10,−, 5)}
∨ {(1.11,+, 4) ∧ (1.11,−, 4)}};

1.07: U = {{(1.07,+, 0) ∨ (1.07,−, 1) ∨ (1.07,+, 2)}
∨ {(1.07,+, 4) ∧ (1.07,−, 5)} ∨ {(1.08,+, 4) ∧ (1.08,−, 5)}
∨ {(1.09,+, 4) ∧ (1.09,−, 5)} ∨ {(1.10,+, 4) ∧ (1.10,−, 5)}
∨ {(1.11,+, 4) ∧ (1.11,−, 5)}};

1.08: U = {{(1.08,−, 0) ∨ (1.08,−, 1) ∨ (1.08,+, 2)}
∨ {(1.08,+, 3) ∧ (1.08,+, 4) ∧ (1.08,−, 5)}
∨ {(1.09,+, 3) ∧ (1.09,+, 4) ∧ (1.09,−, 5)}
∨ {(1.10,+, 3) ∧ (1.10,+, 4) ∧ (1.10,−, 5)}
∨ {(1.11,+, 3) ∧ (1.11,+, 4) ∧ (1.11,−, 5)}};

1.09: U = {{(1.09,+, 0) ∨ (1.09,+, 1) ∨ (1.09,+, 2)}
∨ (1.08,−, 5) ∨ (1.09,−, 5) ∨ (1.10,−, 5) ∨ (1.11,−, 5)};

1.10: U = {{(1.10,−, 0) ∨ (1.10,+, 1) ∨ (1.10,+, 2)}
{(1.08,+, 3) ∧ (1.08,−, 5)} ∨ {(1.09,+, 3) ∧ (1.09,−, 5)}
∨ {(1.10,+, 3) ∧ (1.10,−, 5)} ∨ {(1.11,+, 3) ∧ (1.11,−, 5)}};

1.11: U = {{(1.11,+, 0) ∨ (1.11,−, 1) ∨ (1.11,+, 2)}
∨ {(1.08,+, 4) ∧ (1.08,−, 5)} ∨ {(1.09,+, 4) ∧ (1.09,−, 5)}
∨ {(1.10,+, 4) ∧ (1.10,−, 5)} ∨ {(1.11,+, 4) ∧ (1.11,−, 5)}};

Figure 5.13: Possible types of update on Sliding Window n = 5 for property
AGφ, where each tuple represents a state s, a modifier +/− and a propositional
atom valuation index.

!4 · 23 = 192 combinations of updates11.

Comparing some of the possible updates, we can see one possible update which can

satisfy the property is

U = {(1.11,−, 1), (1.11,+, 0), (1.11,+, 4),(1.11,−, 5), (1.09,−, 5),

(1.08,+, 3), (1.08,+, 4), (1.08,−, 5), (1.10,+, 3), (1.10,−, 5)}.

Although this is possible and would satisfy the overall property, it is a subset of

11This works with the reasoning that we have the permutations of updates over the four
states where there also exists two possible modifications to satisfy three states.
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another possible update

U = {(1.10,+, 3), (1.10,−, 5), (1.09,−, 5), (1.08,+, 3), (1.08,+, 4),

(1.08,−, 5), (1.11,+, 4), (1.11,−, 5)} .

which would be selected as a better update than the former in minChange.

5.2.7 Derived Fix

In applying the update, algorithm Updatec returned finding the most minimal up-

date could be performed by replacing states with states that satisfy the variable

r.receivedId on future paths by the values 0, 1, 2, 3 and 4, giving a total update

count of 8. The update was represented by the returned update tuple set

U = {(1.08,−, 5), (1.09,+, 3), (1.09,−, 5), (1.10,+, 4), (1.10,−, 5),

(1.11,+, 3), (1.11,+, 4), (1.11,−, 5)}

.
It is evident that these eight atomic updates each satisfy multiple states, based

on the necessity of AG to have each state satisfy the subformula (see Figure 5.12).

Viewing this as a property to satisfy, the modification evaluates to the local model

being updated by the formula

AF(r.receivedId2)∧ AF(r.receivedId3)∧

AF(r.receivedId0)∧ AF(r.receivedId1) ∧ ¬s.sentId4.

Calling the member function Updateapply with the model from Figure 5.7 and

update set, we derive the local model shown in the transition graph in Figure 5.14.

Figure 5.14: Updated local model fix (M ′, s′) for window size n = 5.
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5.2.8 Results

n Formula Local Model Total State Reachable Process
Atom Count State Count Count State Count Time (ms)

2 4 7 8 6 344.00

3 6 13 27 27 1938.00

4 8 12 64 45 5813.00

5 10 19 125 96 22531.00

6 12 31 216 175 94531.00

7 14 32 343 288 278844.00

8 16 33 512 441 1020688.00

Table 5.1: Results of Update on sliding window n = 2 . . . 8.

From Table 5.1, we can see that counterexample size manages to maintain a

relatively small size in comparison to the overall reachable state count. Most of the

complexity in terms of time is attributable to the large sets of clauses containing AF

tokens over AG tokens. As mentioned in Chapter 2, Subsection 2.4.2, calculating

minimal updates for both AFφ and AGφ where φ is a propositional formula can be

done in O(|R| · |S| ·2|var(φ)|) and O(|S| ·2|var(φ)|) respectfully. In this case study nest-

ing these temporal operators causes computation time to explode quickly for even

relatively small values of n, where n is window size. As n is grows, the propositional

variable count grows in time 2n. This implies that for each state update, it will

take time O(22n). For window size 8, for example, it will take O(216) for each state

update in the worst case. Since the counterexample size remains small comparing

to the whole model size, the prototype tool is able to perform effective updates and

assist to derive actual fixes.
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5.3 Case Study 3: The Mutual Exclusion Pro-

gram

In this section, we provide some information one particular case study - the well

known mutual exclusion program, and show how our approach can help to find

a proper system modification in the SPIN model checker12. This case study was

conducted as a preliminary experiment into the application of constraint automata

to limit and guide possible modifications in the SPIN environment.

Consider the concurrent program encoded in SPIN in Algorithm 5.1. The pro-

gram consists of processes PA() and PB(), which share two common boolean vari-

ables x and y. To ensure mutual exclusion of the assignments to x and y, some

control variables flag and turn, are introduced. We then declare two critical sections

for each process, one for the assignments to x (line 13 in PA() and PB(), and lines

45/54 in PB()), and another critical region for the assignments to y in PA() (lines

23 in PA() and 52 in PB(), respectively).

It can be seen that in PB(), the critical section for y is nested into critical

section for x. Each variable flagiV (i = 1, 2 and V = A, B) indicates a request for

process PV() to enter critical section i, and turniB dictates whether such a request

by process PB(), in the scenario where there are simultaneous requests, should be

granted.

The specification is formalized in an ACTL formula: φ ≡ AG(¬(ta ∧ (tb ∨ tc))).

This describes that the program satisfies mutual exclusion for assignments to vari-

ables x and y, respectively. This has the effect of eliminating cases where PA()

executes line 13 while PB() attempts to execute lines 45 or 54.

As mentioned by Buccafurri in [10], this program contains approximately 105

states. We apply the SPIN model checker to check whether this program satisfies

property φ. With SPIN optimisation, the program still contains 1800 states during

the checking process. After the SPIN model checking session, it reports that the

12This study was original presented at the Knowledge-Based and Engineering Systems
conference 2010[71].
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Algorithm 5.1: An example of mutual exclusion - SPIN source code.

01 : bool flag1A, flag2A; 38 : proctype PB() {
02 : bool turn1B, turn2B; 39 : do
03 : bool flag1B, flag2B; 40 : :: flag1B = true;
04 : bool x, y; 41 : turn1B = false;
05 : bool ta, tb, tc, td; 42 : do
06 : proctype PA() { 43 : if
07 : do 44 : :: !flag1A || !turn1B →
08 : :: flag1A = true; 45 : atom{x=x && y;tc = true;}
09 : turn1B = false; 46 : tb = false;
10 : do 47 : flag2B = true;
11 : ::if 48 : turn2B = false;
12 : :: !flag1B || !turn1B → 49 : do
13 : atom{x=x && y; ta = true;} 50 : :: if
14 : ta = false; 51 : :: !flag2A || turn2B →
15 : flag1A = false; 52 : y = !y
16 : if 53 : td = false;
17 : :: turn1B → 54 : atom{x = x||y;tb = true;}
18 : flag2A = true; 55 : tb = false;
19 : turn2B = true; 56 : flag2B = false;
20 : do 57 : flag1B = false;
21 : ::if 58 : break;
22 : ::!flag2B || !turn2B → 59 : ::else;
23 : y = false; 60 : fi;
24 : tc = false; 61 : od;
25 : flag2A = false; 62 : break;
26 : break; 63 : ::else;
27 : ::else; 64 : fi;
28 : fi; 65 : od;
29 : od; 66 : od;
30 : ::else; 67 : }
31 : fi; 68 :
32 : break; 69 : int {
33 : ::else; 70 : run PA();
34 : fi; 71 : run PB();
35 : od; 72 : }
36 : od; 73 :
37 : }
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property φ does not hold for the entered program and returns a linear tree-like

counterexample explaining the fault. This counterexample contains 22 states, as

shown in Figure 5.15. In Figure 5.16 we have actions mapping to transitions in the

counterexample.

Figure 5.15: A counterexample for AG(¬(ta ∧ (tb ∨ tc)).

With the counterexample extracted, we determine a means for applying local

model update. First, we construct relevant constraint automata for this program,

as discussed in Section 5.3 of Chapter 4. In this case study, the particular variable

constraint automaton shown in Figure 5.17 will be directly embedded into the update

process.

In Figure 5.17, “∗1” indicates any statement in process PA() except statement
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01 (s0, s1) B: flag1B = 1 18 (s11, s12) B: y =!y
02 (s1, s1) B: turn1B = 0 19 (s12, s12) B: x = x||y
03 (s1, s2) B: flag1A&&!turn1B == 0 20 (s12, s12) B: flag2B = 0
04 (s2, s2) B: x = x&&y 21 (s12, s13) B: flag1B = 0
05 (s2, s3) B: flag2B = 1 22 (s13, s12) B: flag1B = 1
06 (s3, s3) B: turn2B = 0 23 (s12, s12) B: turn1B = 0
07 (s3, s4) B: flag2A&&!turn2B == 0 24 (s12, s14) B: flag1A&&!turn1B == 0
08 (s4, s5) B: y =!y 25 (s14, s15) A: flag1A = 1
09 (s5, s6) B: x = x||y 26 (s15, s16) B: x = x&&y
10 (s6, s7) B: flag2B = 0 27 (s16, s17) B: flag2B = 1
11 (s7, s8) B: flag1A&&!turn1B == 0 28 (s17, s17) B: turn2B = 0
12 (s8, s7) B: x = x&&y(= 1) 29 (s17, s18) B: flag2A&&!turn2B == 0
13 (s7, s9) B: flag1B = 0 30 (s18, s19) B: y =!y
14 (s9, s7) B: flag1B = 1 31 (s19, s20) B: x = x||y
15 (s7, s10) B: flag2B = 1 32 (s20, s20) A: turn1B = 0
16 (s10, s10) B: turn2B = 0 33 (s20, s21) A: flag1B&&!turn1B == 0
17 (s11, s11) B: flag2A&&!turn2B == 034 (s21, s22) A: x = x&&y

Figure 5.16: Action map for mutual exclusion counterexample.

A : x = x&&y, and “∗2” indicates any statement in process PB() except statements

B : x = x&&y and B : x = x‖y. Intuitively, this variable constraint automaton

represents the constraints between variables ta and tb with respect to the various

actions (statements) given in the program.

Considering the counterexample shown in Figure 5.15, we observe that state

s21 describes the violation on property φ, where L(s21) = {ta = 1, tb = 1, tc =

0, f lag1A = 1, ...}. We can see that the transition from s20 to s21 in Figure 5.15

corresponds to the automaton states s2 and s3 in Figure 5.17 respectively.

By applying our tree-like local model update with the associated constraint au-

tomaton (Definition 2.10), the counterexample will be minimally updated to satisfy

φ: state s21 can be updated to either (1) s
′

21: L(s
′

21) = {ta = 0, tb = 1, tc =

0, f lag1A = 1, ...}, or (2) s
′′

21: L(s
′′

21) = {ta = 1, tb = 0, tc = 0, f lag1A = 1, ...}, while all

other states in the local model will remain unchanged.
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Figure 5.17: The variable constraint automaton for ta and tb.

This update suggests that one possible modification for the original program in

Algorithm 5.1 is to change line 9 in PA() from “turn1B = false;” to “turn1B =

true;”. Applying further SPIN model checking using the revised mutual exclusion

program will confirm that this result from the local model update process is a final

correction to the original program.

5.4 Summary

In this chapter we have given three significant case studies demonstrating the usage

of the local model update process and how it can be used to determine fixes for

local models derived from counterexamples of real world model checking programs.

As can be seen from these examples, update becomes computationally expensive as

property and reachable state size grows, making scaling difficult. Further to this,

any aspects of the model not represented with temporal properties can be lost when

applying an update.

Note that although local model update was shown for single counterexample

traces the approach works for crafted tree-like local models. However, multiple

counterexamples need to be parsed and typically NuSMV only returns single paths

leading to a violation of the property. In the following chapter we review the content

presented in this thesis and provide possible direction for future analysis in this field

of research.



Chapter 6

Conclusion

In this chapter, we give a final summation of concepts in this dissertation and discuss

the approach limitations. We then lead to further possible research in the field of

model-based modification and repair.

6.1 Research Summary

As emphasised earlier, model checking is a sound tool for the verification of hard-

ware and software models. Saying this, it has long been known not to be directly

applicable to systems modification and previous methods of system repair and model

update are infeasible for industrial scale application. Techniques previously devised

take the model’s entire state space to apply update and previous implementations

of the approach were taylored to specific case studies. Furthermore, ordering rules

such as closeness, admissible update and maximal reachability still allow much of

the effect of the model explosion problem to occur. The research conducted in this

thesis has extended this work by providing a means of updating a localised region,

describing the violation on the model using model selection semantics that encourage

minimal change and maximal reachability in the region and satisfying the necessary

temporal property. Also, we note the importance of persisting properties, such that

when satisfaction of a new property is required, previous properties still hold after

the modification is made. Characteristics of persistence are analysed and shown to

be maintained for specific cases of update.
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In this thesis we have given a thorough analysis of the theoretical background of

ACTL local model update and provided a system prototype which generates candi-

date fixes from counterexample traces. Further to this we have provided the theory

and implementation of constraint compliance with action and variable constraints

to derive updates which correspond better to system behaviour which could not be

expressed through temporal properties. This addition to model update functionality

represents a significant improvement in efficiency and control in the update process,

alleviating challenges related to the state and model explosion problems.

This research project is another stepping stone for future researchers in generat-

ing an efficient model update compilation tool which can extend from the theoretical

and implemented techniques this research thesis. This being said there is much re-

search to be done to increase technique efficiency and theoretical aspects to extend

the approach and lend more generality. Detailed in the following section is a sum-

mary of research provided in each chapter and an analysis of potential avenues for

further study in the field of model update based on the current limitations evident.

Minimal Change with Weak Bisimulation Ordering

Local models are characterised as Kripke structures which hold a tree-like structure,

generated from counterexamples derived from model checking sessions with ACTL

properties. Local model update is guided by weak bisimulation as a means of deter-

mining which modified local model is closest to the original relative to some other

local model which satisfies the property. This is done by mapping similarity in the

transition structure of a candidate model with the original. In this way two sets

of modifications can be compared to determine which is optimal. The semantics of

weak bisimulation guided ordering favours model modifications driven to the lower

depths of a tree-like model. We found that for each of the temporal operators of

ACTL updates occurring on sections of the model, where possible and applicable,

updating on lower branches is favoured if possible. This form of ordering criteria

was tempered with variable and action constraint automata as a means of directing

update towards modifications, which, although may be less desirable from a weak

bisimulation ordering standpoint, will comply to necessary constraint automata.

Further, a system for tokenising updates with update tuples, is posed. This allows
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us to map differences between two models in an efficient way using atomic updates

similar to primitive updates given in [101].

Update Characterisations and Complexity

ACTL properties are abstractions of system behaviours which should occur in the

underlying model. As the approach is applied to local models generated from coun-

terexamples in checking sessions, we are guaranteed that the local model does not

satisfy the property. In performing the updates we give characterisations of updates

and provide time complexities given the type of property operations encountered.

The complexity of a local model update is proven to be co-NP-complete. Persis-

tence properties are shown to allow some properties to be satisfied in a model and

persist while being updated by another property. This is in the scenarios where

the properties hold no common propositional atoms or the update involves strict

extensions.

Algorithms

The algorithms generated to enact ACTL Local model update have been done so

guided by the characterisations generated in the earlier theoretical section. Algo-

rithms are expressed as pseudocode and uses a combination of iterative and recursive

means to effect path traversal and property satisfaction within the local model.

The algorithm provides a central function which routes control to its subordinate

methods, which in turn recursively call the central method or, if passed a propo-

sitional atom or some heuristic is designed for satisfying the current formula, will

return an update tuple set which suggests a state, transition or label to add or re-

move, based on ACTL formula semantics in Definition 2.1. When the most minimal

update has been determined it is recursively returned back through the function

stack. This update set can be applied to the model to effect property satisfaction

and the algorithm may terminate. With this, SMV counterexamples can be reduced

to the corresponding Kripke structures and the described algorithms can be used to

modify it to satisfy the property in a minimal way.
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Prototype

Given the generated local model algorithms and characterisations, we have devel-

oped a prototype l-Up for updating tree-like models derived from model checking

counterexamples. The prototype works as a back-end to the model checking tool

NuSMV, allowing analysis and parsing of counterexamples into an associated tree-

like model transition system with state labels. The prototype uses the previously

described algorithms to effect satisfaction of the properties and to maintain satisfac-

tion of properties which still hold for the local model. The l-Up project provides 4

packages for research in local model update, including pySMV for extracting SMV

program and counterexample details, pyFormula for parsing, lexical analysis and

manipulation of ACTL formulas, pyModels for providing core local model update

functionality and local model checking, and pyAutomata for constraint automata

analysis.

Case Studies

This approach has been demonstrated on three robust case studies, two expressed

as SMV input files, a semaphore sharing model and the Sliding Window Protocol

modelled with increasing window size, and the mutual exclusion model in the SPIN

environment. With each of these examples a minimal update was derived which

satisfied the local model in question in a computationally feasible time and model

size.

The implementation presented demonstrates the research goals of this disserta-

tion: local model update is shown to be a viable approach in respect to complexity in

Chapter 2. The final example demonstrated the application of constraint automata

to an instance of a mutual exclusion model in the SPIN environment, showing how

variable constraints can be used to devise applicable updates in a process locking

scenario.
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Domain Constraints

Extending the update approach, we included constraint automata compliance theory

to allow system designers to specify more fine grained control of update behaviour

and to ascertain what types of modifications are admissible, other than just speci-

fying the universal temporal specification which needs to be satisfied. Action and

variable constraint automaton were considered for expressing various conditions in

the model otherwise inexpressible in ACTL. Definitions for constraint compliance

were given, characterisations and complexity results were ascertained and algorithms

were generated describing how this is implemented in the local model update pro-

totype.

To show the efficacy of local model update as extended by constraint automata

we have included a case study of the mutual exclusion model, using variable con-

straint automata to dictate correct behaviour in a counterexample towards satisfying

a user defined property.

6.2 Future Research

6.2.1 Model Checking and Tree-like Models

To be able to successfully effect global satisfaction of some system model found to not

satisfy an ACTL property we require model checking tools which can generate tree-

like models. At the current state tree-like models are generated by deriving linear

counterexamples from NuSMV and mapping the same states to merge the transition

systems in such a way as to maintain the tree-like structure. Having tree-like model

generation be a standard feature for model checkers would further help automate

the process. In [27] Clarke et al. proposes symbolic algorithms for computing tree-

like models in the SMV model checking tool, however no implementation or smv

extension has been proposed as of yet.
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6.2.2 Reintegration of the Updated Local Model

The approach given in this thesis proposes a method for devising minimal candidate

fixes for localised tree-like models derived from counterexamples. The next logical

step is to determine a method for reintegration of the local model back into the

global model such that the original model satisfies the required property and any

other defined properties.

Inherent in this process is the requirement of mapping a repaired tree-like model

to behaviour in some SMV file, representable by a Kripke structure. This involves

multiple steps. Firstly, we would need to develop a method for translating the local

model repair back into an explicit Kripke structure such that the global Kripke

structure also satisfies the property (i.e. a global fix). The next step would be to

translate this approach back to the original model specification file such that the new

smv file satisfies the temporal property. This would be the next step in developing

a universal ACTL local model updater.

6.2.3 Automatic Generation of Constraint Automata

Constraint automata are a useful tool for guiding update modifications. However,

it is the job of the developer to analyse the system design, model and construct

the automata necessary to guide update. A fruitful research direction would be to

investigate the automatic generation of these structures through analysis of model

description files. Algorithms could be used to determine related variable domains

and process action interaction such that the update process can have a minimal foot-

print on necessary system structure while still guaranteeing the temporal property

is satisfied in the model.
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6.2.4 Model Checker Parsers and Extraction Tools

Many of the approaches shown in this thesis relied on being able to parse the input

specification and output reports of the NuSMV suite, and with further development

on the parsers and extraction tools many other applications can be generated. This

includes computation of tree-like models, generation of constraint automata and

steps toward mapping the derived modification back into a model checking speci-

fication file. Integrated tools which provide this functionality would be useful for

future research into generating a universal update tool.

6.3 Summary

We have provided a theoretical and prototypical foundation for the approach of

applying update to local regions of a system model represented as tree-like Kripke

structures. To emphasise, this work provides a foundation for the generation of a

robust universal model update tool which returns minimal candidate modifications.

There exist many avenues for continuing research at later stages leading to this goal.

Continuing from this work, we are confident that this research solves many of the

challenges posed on the path to creating a universal model update tool.



A. ReadMe File for the ACTL

Tree-like Local Model Update

System

l-Up is a modular software package written in Python that can be used as an API to

be built upon by future researchers looking to develop and extend the technique of

localised treelike model update. The package contains a library of Python packages

and modules for the purposes of model checking, counterexample interpretation and

parsing, tree-like structure building and parsing, ACTL formula tokenisation and

interpretation.

Also included is example programs used in this thesis to test the validity of the

local model update system. This includes:

• Gigamax coherence protocol for variable parsing;

• Semaphore sharing;

• Sliding window protocol with varying window size.

The Tree-like local model update suite can be obtained from attached CD disk

or the following URL, and comes compressed for windows as .zip respectfully.

http://scm.uws.edu.au/∼mkelly/l-upProject.html
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A.1 Windows

The development package l-Up was created using the Python(x, y). Python(x, y) a

scientific-oriented Python distribution aimed at providing engineering development

software for numerical computations, data analysis and data visualization. Included

with Python(x, y) is the Eclipse development environment with the Python project

development tool PyDev.

To test the case studies given in this thesis in Eclipse or to analyse the l-Up

project, the reader needs to import the l-Up project into the Eclipse workspace. To

import the l-Up package right-click inside the PyDev Package Explorer and select

Import.... In the Import window double-click General → Existing Projects into

Workspace. From here select Browse next to the Select root directory title and

indicate the root directory of the l-Up directory.

To execute the scenarios presented in the case studies select the experiments

package in src and select one of the modules. To run each case select F9 to execute

the program.

As l-Up has been scripted in the Python scripting language it is accessible on

any operating system with the Python 2.6 interpreting libraries installed. NuSMV

2.4.3 is included with the package for the purpose of deriving counterexamples. The

latest version NuSMV 2.5.3 is currently untested with this framework.

Further, for formula parsing the PLY tools yacc and lex are necessary. To install

PLY download the package from http://www.dabeaz.com/ply/. Go to command

prompt and navigate to the PLY package folder, from here, type

python setup.py install.

Python will now allow reference to yacc and lex in the eclipse environment.



B. Gigamax Cache Coherence

Model Program

Algorithm B.1 Processor module.

01 : MODULE processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL)

02 : ISA bus-device;

03 : ISA cache-device;

04 : ASSIGN

05 : cmd :=

06 : case

07 : master & state = invalid : {read-shared, read-owned};

08 : master & state = shared : read-owned;

09 : master & state = owned & snoop = owned : write-resp-invalid;

10 : master & state = owned & snoop = shared: write-resp-shared;

11 : master & state = owned & snoop = invalid: write-invalid;

12 : TRUE: idle;

13 : esac;
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Algorithm B.2.1 Cache-device module.

01 : MODULE cache-device

02 : VAR

03 : state : {invalid, shared, owned};

04 : DEFINE

05 : readable := ((state = shared) | (state = owned)) & !waiting;

06 : writable := (state = owned) & !waiting;

07 : ASSIGN

08 : init(state) := invalid;

09 : next(state) :=

10 : case

11 : abort: state;

12 : master :

13 : case

14 : CMD = read-shared : shared;

15 : CMD = read-owned : owned;

16 : CMD = write-invalid : invalid;

17 : CMD = write-resp-invalid : invalid;

18 : CMD = write-shared : shared;

19 : CMD = write-resp-shared : shared;

20 : TRUE : state;

21 : esac;

22 : !master & state = shared & (CMD = read-owned | CMD = invalidate) :

23 : invalid;

24 : state = shared : {shared, invalid};

25 : TRUE : state;

26 : esac;

27 : DEFINE

28 : reply-owned := !master & state = owned;

29 : VAR

30 : snoop : {invalid, owned, shared};

31 : ASSIGN

32 : init(snoop) := invalid;

33 : next(snoop) :=

34 : case
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Algorithm B.2.2 Cache-device Module cont.

35 : abort : snoop;

36 : !master & state = owned & CMD = read-shared: snoop;

37 : !master & state = owned & CMD = read-shared: owned;

38 : master & CMD = write-resp-invalid : invalid;

39 : master & CMD = write-resp-shared : invalid;

40 : TRUE : snoop;

41 : esac;

Algorithm B.3 Bus-device module.

01 : MODULE bus-device

02 : VAR

03 : master : boolean;

04 : cmd : {idle, read-shared, read-owned, write-invalid, write-shared,

05 : . . . write-resp-invalid, write-resp-shared, invalidate, response};

06 : waiting : boolean;

07 : reply-stall: boolean;

08 : ASSIGN

09 : init(waiting) := FALSE;

10 : next(waiting) :=

11 : case

12 : abort : waiting;

13 : master & CMD = read-shared : TRUE;

14 : master & CMD = read-owned : TRUE;

15 : !master & CMD = response : FALSE;

16 : !master & CMD = write-resp-invalid : FALSE;

17 : !master & CMD = write-resp-shared : FALSE;

18 : TRUE : waiting;

19 : esac;

20 : DEFINE

21 : reply-waiting := !master & waiting;

22 : abort := REPLY-STALL

. . . | ((CMD = read-shared | CMD = read-owned) & REPLY-WAITING);
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Algorithm B.4 Memory module.

01 : MODULE memory(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL)

02 : VAR

03 : master : boolean;

04 : cmd : {idle, read-shared, read-owned, write-invalid, write-shared,

05 : . . . write-resp-invalid, write-resp-shared, invalidate, response};

06 : busy : boolean;

07 : reply-stall: boolean;

08 : DEFINE

09 : reply-owned := FALSE;

10 : reply-waiting := FALSE;

11 : abort := REPLY-STALL | (CMD = read-shared | CMD = read-owned) &

. . . REPLY-WAITING | (CMD = read-shared | CMD = read-owned)

. . . & REPLY-OWNED;

12 : ASSIGN

13 : init(busy) := FALSE;

14 : next(busy) :=

15 : case

16 : abort : busy;

17 : master & CMD = response: FALSE;

18 : !master & (CMD = read-owned | CMD = read-shared): TRUE;

19 : TRUE: busy;

20 : esac;

21 : cmd :=

22 : case

23 : master & busy : {response, idle};

24 : TRUE: idle;

25 : esac;

26 : reply-stall :=

27 : case

28 : busy & (CMD = read-shared | CMD = read-owned

29 : | CMD = write-invalid | CMD = write-shared

30 : |CMD = write-resp-invalid|CMD = write-resp-shared):TRUE

31 : TRUE: {FALSE, TRUE};

32 : esac;
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Algorithm B.5 Main Module

01 : MODULE main

02 : VAR

03 : cmd : {idle, read-shared, read-owned, write-invalid, write-shared,

04 : . . . write-resp-invalid, write-resp-shared, invalidate, response};

05 : p0 : processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);

06 : p1 : processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);

07 : p2 : processor(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);

08 : m : memory(CMD, REPLY-OWNED, REPLY-WAITING, REPLY-STALL);

09 : DEFINE

10 : REPLY-OWNED := p0.reply-owned | p1.reply-owned | p2.reply-owned;

11 : REPLY-WAITING := p0.reply-waiting | p1.reply-waiting | p2.reply-waiting;

12 : REPLY-STALL := p0.reply-stall | p1.reply-stall | p2.reply-stall | m.reply-stall;

13 : ASSIGN

14 CMD :=

15 : case

16 : p1.cmd = idle & p2.cmd = idle & m.cmd = idle : p0.cmd;

17 : p0.cmd = idle & p2.cmd = idle & m.cmd = idle : p1.cmd;

18 : p0.cmd = idle & p1.cmd = idle & m.cmd = idle : p2.cmd;

19 : p0.cmd = idle & p1.cmd = idle & p2.cmd = idle : m.cmd;

20 : TRUE: {idle, read-shared, read-owned, write-invalid, write-shared,

21 : . . . write-resp-invalid, write-resp-shared, invalidate, response};

22 : esac;

23 : ASSIGN

24 : p0.master := {FALSE, TRUE}

25 : p1.master :=

26 : case

27 : p0.master : FALSE;

28 : TRUE : {FALSE, TRUE};

29 : esac;

30 : p2.master :=

31 : case

32 : p0.master | p1.master: FALSE;

33 : TRUE : {FALSE, TRUE};

34 : esac;

35 : m.master :=

36 : case

37 : p0.master | p1.master | p2.master: FALSE;

38 : TRUE : {FALSE, TRUE};

39 : esac;

40 : SPEC AG EF (p0.readable)

41 :

42 : SPEC AG EF (p0.writable)

43 :

44 : SPEC AG ! (p0.writable & p1.writable)
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−− specification AG (EF p0.readable) is true
−− specification AG (EF p0.writable) is true
−− specification AG !(p0.writable & p1.writable) is false
−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample
system diameter: 8
reachable states: 8872 (213.115) out of 1.76319e+ 011 (237.3594)

01 : − > State: 1.1 < − 33 : p0.readable = 0 65 : m.master = 0
02 : CMD = read-shared 34 : p0.reply-owned = 0 66 : m.cmd = idle
03 : p0.master = 1 35 : p1.abort = 0 67 : m.busy = 0
04 : p0.cmd = read-shared 36 : p1.reply-waiting = 0 68 : REPLY-WAITING = 0
05 : p0.waiting = 0 37 : p1.writable = 0 69 : p0.reply-waiting = 0
06 : p0.reply-stall = 0 38 : p1.readable = 0 70 : p0.writable = 1
07 : p0.state = invalid 39 : p1.reply-owned = 0 71 : p0.readable = 1
08 : p0.snoop = invalid 40 : p2.abort = 0 72 : − > Input: 1.4 < −
09 : p1.master = 0 41 : p2.reply-waiting = 0 73 : − > State: 1.4 < −
10 : p1.cmd = idle 42 : p2.writable = 0 74 : CMD = response
11 : p1.waiting = 0 43 : p2.reply-owned = 0 75 : p1.master = 0
12 : s.sentId = 1 44 : m.abort = 0 76 : p1.cmd = idle
13 : p1.reply-stall = 0 45 : m.reply-waiting = 0 77 : p1.waiting = 1
14 : p1.state = invalid 46 : m.reply-owned = 0 78 : p1.state = shared
15 : p1.snoop = invalid 47 : − > Input: 1.2 < − 79 : m.master = 1
16 : p2.master = 0 48 : − > State: 1.2 < − 80 : m.cmd = response
17 : p2.cmd = idle 49 : CMD = response 81 : m.busy = 1
18 : p2.waiting = 0 50 : p0.master = 0 82 : REPLY-WAITING = 1
19 : p2.reply-stall = 0 51 : p0.cmd = idle 83 : p1.reply-waiting = 1
20 : p2.state = invalid 52 : p0.waiting = 1 84 : − > Input: 1.5 < −
21 : p2.snoop = invalid 53 : p0.state = shared 85 : − > State: 1.5 < −
22 : m.master = 0 54 : m.master = 1 86 : CMD = read-shared
23 : m.cmd = idle 55 : m.cmd = response 87 : p1.waiting = 0
24 : m.busy = 0 56 : m.busy = 1 88 : p2.master = 1
25 : m.reply-stall = 0 57 : REPLY-WAITING = 1 89 : p2.cmd = read-shared
26 : s.running = 0 58 : p0.reply-waiting = 1 90 : m.master = 0
27 : REPLY-STALL = 0 59 : − > Input: 1.3 < − 91 : m.cmd = idle
28 : REPLY-WAITING = 0 60 : − > State: 1.3 < − 92 : m.busy = 0
29 : REPLY-OWNED = 0 61 : CMD = read-shared 93 : REPLY-WAITING = 0
30 : p0.abort = 0 62 : p0.waiting = 0 94 : p1.reply-waiting = 0
31 : p0.reply-waiting = 0 63 : p1.master = 1 95 : p1.writable = 1
32 : p0.writable = 0 64 : p1.cmd = read-shared 96 : p1.readable = 1

Gigamax program counterexample with inserted error.



C. Counterexamples for Case

Studies

∗ ∗ ∗ This is NuSMV 2.4.3 (compiled on Tue May 22 14:08:54 UTC 2007)
∗ ∗ ∗ For more information on NuSMV see <http://nusmv.irst.itc.it>
∗ ∗ ∗ or email to <nusmv-users@irst.itc.it>.
∗ ∗ ∗ Please report bugs to <nusmv@irst.itc.it>.

∗ ∗ ∗ This version of NuSMV is linked to the MiniSat SAT solver.
∗ ∗ ∗ See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
∗ ∗ ∗ Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

−− specification AG !(proc1.state = critical & proc2.state = critical) is true
−− specification AG (proc1.state = entering → AF proc1.state = critical)

is false
−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

Counterexample header for semaphore sharing model.
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01 : − > State: 1.1 < − 37 : running = 0
02 : semaphore = 0 38 : proc2.running = 1
03 : proc1.state = idle 39 : proc1.running = 0
04 : proc2.state = idle 40 : − > State: 1.6 < −
05 : − > Input: 1.2 < − 41 : semaphore = 0
06 : process selector = proc2 42 : proc2.state = idle
07 : running = 0 43 : − > Input: 1.7 < −
08 : proc2.running = 1 44 : process selector = proc2
09 : proc1.running = 0 45 : running = 0
10 : − > State: 1.2 < − 46 : proc2.running = 1
11 : proc2.state = entering 47 : proc1.running = 0
12 : − > Input: 1.3 < − 48 : − > State: 1.7 < −
13 : process selector = proc2 49 : proc2.state = entering
14 : running = 0 50 : − > Input: 1.8 < −
15 : proc2.running = 1 51 : process selector = proc2
16 : proc1.running = 0 52 : running = 0
17 : − > State: 1.3 < − 53 : proc2.running = 1
18 : semaphore = 1 54 : proc1.running = 0
19 : proc2.state = critical 55 : − > State: 1.8 < −
20 : − > Input: 1.4 < − 56 : semaphore = 1
21 : process selector = proc1 57 : proc2.state = critical
22 : running = 0 58 : − > Input: 1.9 < −
23 : proc2.running = 0 59 : process selector = proc1
24 : proc1.running = 1 60 : running = 0
25 : − > State: 1.4 < − 61 : proc2.running = 0
26 : proc1.state = entering 62 : proc1.running = 1
27 : − > Input: 1.5 < − 63 : − > State: 1.9 < −
28 : process selector = proc2 64 : − > Input: 1.10 < −
29 : running = 0 65 : process selector = proc2
30 : proc2.running = 1 66 : running = 0
31 : proc1.running = 0 67 : proc2.running = 1
32 : – Loop starts here 68 : proc1.running = 0
33 : − > State: 1.5 < − 69 : − > State: 1.10 < −
34 : proc2.state = critical 70 : proc2.state = exiting
35 : − > Input: 1.6 < − 71 : system diameter : 5
36 : process selector = proc2 72 : reachable states :

73 : 12 (23.58496) out of 32 (25)

Counterexample for semaphore sharing model with two processes.
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∗ ∗ ∗ This is NuSMV 2.4.3 (compiled on Tue May 22 14:08:54 UTC 2007)
∗ ∗ ∗ For more information on NuSMV see <http://nusmv.irst.itc.it>
∗ ∗ ∗ or email to <nusmv-users@irst.itc.it>.
∗ ∗ ∗ Please report bugs to <nusmv@irst.itc.it>.

∗ ∗ ∗ This version of NuSMV is linked to the MiniSat SAT solver.
∗ ∗ ∗ See http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
∗ ∗ ∗ Copyright (c) 2003-2005, Niklas Een, Niklas Sorensson

−− specification AG ((s.sentId = 0 → AFr.receivedId = 0) &
(s.sentId = 1 → AFr.receivedId = 1) &
(s.sentId = 2 → AFr.receivedId = 2) &
(s.sentId = 3 → AFr.receivedId = 3) &
(s.sentId = 4 → AFr.receivedId = 4))
is false

−− as demonstrated by the following execution sequence
Trace Description: CTL Counterexample
Trace Type: Counterexample

...
system diameter : 15
reachable states : 96 (26.58496) out of 125 (26.96578)

Header for Sliding Window Protocol counterexample of size n = 5.



6.3. Summary 190

01 : − > State: 1.1 < − 50 : s.running = 0 99 : − > State: 1.13 < −
02 : s.sentId = 0 51 : − > State: 1.7 < − 100 : s.sentId = 0
03 : r.receivedId = 0 52 : r.receivedId = 3 101 : − > Input: 1.14 < −
04 : a.returnId = 0 53 : − > Input: 1.8 < − 102 : process selector = s
05 : − > Input: 1.2 < − 54 : process selector = a 103 : running = 0
06 : process selector = s 55 : running = 0 104 : a.running = 0
07 : running = 0 56 : a.running = 1 105 : r.running = 0
08 : a.running = 0 57 : r.running = 0 106 : s.running = 1
09 : r.running = 0 58 : s.running = 0 107 : − > State: 1.14 < −
10 : s.running = 1 59 : − > State: 1.8 < − 108 : s.sentId = 1
11 : − > State: 1.2 < − 60 : − > Input: 1.9 < − 109 : − > Input: 1.15 < −
12 : s.sentId = 1 61 : process selector = r 110 : process selector = s
13 : − > Input: 1.3 < − 62 : running = 0 111 : running = 0
14 : process selector = s 63 : a.running = 0 112 : a.running = 0
15 : running = 0 64 : r.running = 1 113 : r.running = 0
16 : a.running = 0 65 : s.running = 0 114 : s.running = 1
17 : r.running = 0 66 : − > State: 1.9 < − 115 : − > State: 1.15 < −
18 : s.running = 1 67 : r.receivedId = 4 116 : s.sentId = 2
19 : − > State: 1.3 < − 68 : − > Input: 1.10 < − 117 : − > Input: 1.16 < −
20 : s.sentId = 2 69 : process selector = s 118 : process selector = a
21 : − > Input: 1.4 < − 70 : running = 0 119 : running = 0
22 : process selector = a 71 : a.running = 0 120 : a.running = 1
23 : running = 0 72 : r.running = 0 121 : r.running = 0
24 : a.running = 1 73 : s.running = 1 122 : s.running = 0
25 : r.running = 0 74 : − > State: 1.10 < − 123 : − > State: 1.16 < −
26 : s.running = 0 75 : s.sentId = 3 124 : a.returnId = 4
27 : − > State: 1.4 < − 76 : − > Input: 1.11 < − 125 : − > Input: 1.17 < −
28 : a.returnId = 4 77 : process selector = a 126 : process selector = r
29 : − > Input: 1.5 < − 78 : running = 0 127 : running = 0
30 : process selector = r 79 : a.running = 1 128 : a.running = 0
31 : running = 0 80 : r.running = 0 129 : r.running = 1
32 : a.running = 0 81 : s.running = 0 130 : s.running = 0
33 : r.running = 1 82 : −− Loop starts here 131 : − > State: 1.17 < −
34 : s.running = 0 83 : − > State: 1.11 < − 132 : − > Input: 1.18 < −
35 : − > State: 1.5 < − 84 : a.returnId = 3 133 : process selector = s
36 : r.receivedId = 1 85 : − > Input: 1.12 < − 134 : running = 0
37 : − > Input: 1.6 < − 86 : process selector = a 135 : a.running = 0
38 : process selector = r 87 : running = 0 136 : r.running = 0
39 : running = 0 88 : a.running = 1 137 : s.running = 1
40 : a.running = 0 89 : r.running = 0 138 : − > State: 1.18 < −
41 : r.running = 1 90 : s.running = 0 139 : s.sentId = 3
42 : s.running = 0 91 : −− Loop starts here 140 : − > Input: 1.19 < −
43 : − > State: 1.6 < − 92 : − > State: 1.12 < − 141 : process selector = a
44 : r.receivedId = 2 93 : − > Input: 1.13 < − 142 : running = 0
45 : − > Input: 1.7 < − 94 : process selector = s 143 : a.running = 1
46 : process selector = r 95 : running = 0 144 : r.running = 0
47 : running = 0 96 : a.running = 0 145 : s.running = 0
48 : a.running = 0 97 : r.running = 0 146 : − > State: 1.19 < −
49 : r.running = 1 98 : s.running = 1 147 : a.returnId = 3

Counterexample for Sliding Window Protocol of size n = 5.
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